Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 5
Linear 1 5
A
,
B
∈
F
n
×
n
A
B
=
I
⟺
B
A
=
I
∃
A
−
1
,
B
−
1
⟺
∃
(
A
B
)
−
1
U
+
W
=
{
u
+
w
∣
u
∈
U
,
w
∈
W
}
U
,
W
⊆
V
U
⊆
U
+
W
(
∀
u
:
u
=
u
+
0
W
)
W
⊆
U
+
W
(
∀
w
:
w
=
0
U
+
w
)
U
+
W
⊆
V
(
∀
u
,
w
:
u
+
w
=
v
1
+
v
2
∈
V
)
1.
0
V
∈
U
+
W
0
V
=
0
U
+
0
W
∈
U
+
W
2.
v
,
v
~
∈
U
+
W
v
∈
U
+
W
⟹
v
=
u
+
w
v
~
∈
U
~
+
W
~
⟹
v
~
=
u
~
+
w
~
v
+
α
v
~
=
u
+
w
+
α
(
u
~
+
w
~
)
=
=
u
+
α
u
~
+
w
+
α
w
~
=
u
+
u
~
+
w
+
w
~
U
=
{
(
x
0
)
∣
x
∈
R
}
W
=
{
(
0
x
)
∣
x
∈
R
}
U
+
W
=
{
(
x
x
)
∣
x
∈
R
}
=
R
2
{
(
x
y
0
)
}
+
{
(
0
x
y
)
}
=
R
3
Direct sum
#definition
U
,
W
⊆
V
over
F
U
⊕
W
−
direct sum of
U
and
W
(
∀
v
:
∃
u
∈
U
,
w
∈
W
:
v
=
u
+
w
)
∧
U
∩
W
=
{
0
}
⟺
U
⊕
W
=
V
Uniqueness of vector spaces sum
#lemma
U
,
W
⊆
V
over
F
U
⊕
W
=
V
⟺
∀
v
∈
V
:
∃
!
u
∈
U
,
w
∈
W
:
v
=
u
+
w
Proof:
1.
Let
U
⊕
W
=
V
∃
u
∈
U
,
w
∈
W
:
v
=
u
+
w
Let
u
~
∈
U
,
w
~
∈
W
:
v
=
u
~
+
w
~
⟹
u
+
w
=
u
~
+
w
~
⟹
u
~
−
u
=
w
−
w
~
⟹
u
~
−
u
∈
U
∧
u
~
−
u
∈
W
⟹
u
~
−
u
∈
U
∩
W
⟹
u
~
−
u
∈
{
0
}
⟹
u
~
−
u
=
0
⟹
u
=
u
~
⟹
∃
!
u
∈
U
,
w
∈
W
:
v
=
u
+
w
2.
L
e
t
∃
!
u
∈
U
,
w
∈
W
:
v
=
u
+
w
∃
!
u
∈
U
,
w
∈
W
:
v
=
u
+
w
⟹
∃
u
∈
U
,
w
∈
W
:
v
=
u
+
w
⟺
U
+
W
=
V
{
0
}
⊆
U
∩
W
Let
v
∈
U
∩
W
v
=
v
+
0
,
v
=
0
+
v
∃
!
u
∈
U
,
w
∈
W
:
v
=
u
+
w
⟹
0
+
v
=
v
+
0
⟹
v
=
0
⟹
U
∩
W
⊆
{
0
}
⟹
U
∩
W
=
{
0
}
S
=
{
(
0
1
)
,
(
1
1
)
}
(
3
5
)
=
−
2
(
0
1
)
+
5
(
1
1
)
∃
S
1
,
S
2
,
S
3
,
…
,
S
n
∈
S
∃
α
1
,
α
2
,
α
3
,
…
,
α
n
∈
F
v
=
α
1
S
1
+
α
2
S
2
+
⋯
+
α
n
S
n
S
=
{
1
,
2
+
x
,
1
+
x
2
}
2
+
x
−
x
2
=
α
(
1
)
+
β
(
2
+
x
)
+
γ
(
1
+
x
2
)
α
+
2
β
+
β
x
+
γ
+
γ
x
2
=
(
α
+
2
β
+
γ
)
1
+
(
β
)
x
+
(
γ
)
x
2
{
α
+
2
β
+
γ
=
2
β
=
1
γ
=
−
1
α
=
1
,
β
=
1
,
γ
=
−
1
Span
#definition
V
over
F
,
S
⊆
V
s
p
(
S
)
(span S)
s
p
(
S
)
=
{
α
1
s
1
+
α
2
s
2
+
⋯
+
α
n
s
n
|
n
∈
N
α
1
,
α
2
,
…
,
α
n
∈
F
s
1
,
s
2
,
…
,
s
n
∈
S
}
Span cannot exceed vector space
#lemma
S
⊆
V
⟹
s
p
(
S
)
is a subspace of
V
Proof:
1.
S
=
∅
S
=
∅
⟹
s
p
(
S
)
=
{
0
}
⟹
s
p
(
S
)
is a subspace of
V
2.
S
≠
∅
2.1
0
→
∈
s
p
(
S
)
S
≠
∅
⟹
∃
s
∈
S
:
0
⋅
s
∈
s
p
(
S
)
⟺
0
→
∈
s
p
(
S
)
2.2
Let
u
,
v
∈
s
p
(
S
)
⟹
u
=
α
1
S
1
+
…
α
n
S
n
⟹
v
=
β
1
S
1
+
⋯
+
β
n
S
n
+
0
(
S
~
1
+
S
~
2
+
…
)
⟹
u
+
α
v
=
(
α
1
+
α
β
1
)
S
1
+
…
(
α
n
+
α
β
n
)
S
n
∈
s
p
(
S
)