Linear-1 5

Linear 1 5

A,BFn×nAB=IBA=IA1,B1(AB)1
U+W={u+wuU,wW}U,WVUU+W(u:u=u+0W)WU+W(w:w=0U+w)U+WV(u,w:u+w=v1+v2V)1.0VU+W0V=0U+0WU+W2.v,v~U+WvU+Wv=u+wv~U~+W~v~=u~+w~v+αv~=u+w+α(u~+w~)==u+αu~+w+αw~=u+u~+w+w~
U={(x0)xR}W={(0x)xR}U+W={(xx)xR}=R2{(xy0)}+{(0xy)}=R3

Direct sum #definition

U,WV over FUWdirect sum of U and W(v:uU,wW:v=u+w)UW={0}UW=V

Uniqueness of vector spaces sum #lemma

U,WV over FUW=VvV:!uU,wW:v=u+wProof:1.Let UW=VuU,wW:v=u+wLet u~U,w~W:v=u~+w~u+w=u~+w~u~u=ww~u~uUu~uWu~uUWu~u{0}u~u=0u=u~!uU,wW:v=u+w2.Let!uU,wW:v=u+w!uU,wW:v=u+wuU,wW:v=u+wU+W=V{0}UWLet vUWv=v+0,v=0+v!uU,wW:v=u+w0+v=v+0v=0UW{0}UW={0}
S={(01),(11)}(35)=2(01)+5(11)S1,S2,S3,,SnSα1,α2,α3,,αnFv=α1S1+α2S2++αnSnS={1,2+x,1+x2}2+xx2=α(1)+β(2+x)+γ(1+x2)α+2β+βx+γ+γx2=(α+2β+γ)1+(β)x+(γ)x2{α+2β+γ=2β=1γ=1α=1,β=1,γ=1

Span #definition

V over F,SVsp(S) (span S)sp(S)={α1s1+α2s2++αnsn|nNα1,α2,,αnFs1,s2,,snS}

Span cannot exceed vector space #lemma

SVsp(S) is a subspace of VProof:1.S=S=sp(S)={0}sp(S) is a subspace of V2.S2.10sp(S)SsS:0ssp(S)0sp(S)2.2Let u,vsp(S)u=α1S1+αnSnv=β1S1++βnSn+0(S~1+S~2+)u+αv=(α1+αβ1)S1+(αn+αβn)Snsp(S)