Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 6
Linear-1 6
s
p
(
A
)
⊆
s
p
(
B
)
⟹
?
A
⊆
B
No:
A
=
{
(
1
0
)
}
,
B
=
{
(
2
0
)
}
A
⊆
B
⟹
?
s
p
(
A
)
⊆
s
p
(
B
)
Yes:
…
S
=
s
p
(
S
)
⟺
S
is a vector subspace of
V
s
p
(
{
(
0
1
)
}
)
+
s
p
(
{
(
0
1
)
}
)
=
s
p
(
{
(
0
1
)
,
(
1
0
)
}
)
Sum of spans is a span of union
#lemma
Prove:
s
p
(
A
)
+
s
p
(
B
)
=
s
p
(
A
∪
B
)
Proof:
Let
v
∈
s
p
(
A
)
+
s
p
(
B
)
v
=
∑
i
=
1
n
α
i
u
i
⏟
∈
A
⊆
(
A
∪
B
)
+
∑
i
=
1
k
β
i
w
i
⏟
∈
B
⊆
(
A
∪
B
)
⟹
v
∈
(
A
∪
B
)
⟹
s
p
(
A
)
+
s
p
(
B
)
⊆
s
p
(
A
∪
B
)
Let
v
∈
s
p
(
A
∪
B
)
v
=
∑
i
=
1
n
α
i
v
i
∀
i
∈
[
1
,
n
]
:
v
i
∈
A
∨
v
i
∈
B
Let’s reorder sum the following way:
v
=
∑
i
=
1
k
α
i
v
i
⏟
v
i
∈
A
+
∑
i
=
k
+
1
n
α
i
v
i
⏟
v
i
∈
B
⟹
v
=
u
⏟
∈
s
p
(
A
)
+
w
⏟
∈
s
p
(
B
)
⟹
v
∈
s
p
(
A
)
+
s
p
(
B
)
⟹
s
p
(
A
∪
B
)
⊆
s
p
(
A
)
+
s
p
(
B
)
Linear dependence/independence
#definition
V
is a vector space over
F
,
S
⊆
V
S
is called linear dependence if exist
s
1
,
s
2
,
…
,
s
n
∈
S
α
1
,
α
2
,
…
,
α
n
∈
F
such that
α
1
s
1
+
…
α
n
s
n
=
0
S
is called linear independence if for all
s
1
,
s
2
,
…
,
s
n
∈
S
α
1
,
α
2
,
…
,
α
n
∈
F
such that
α
1
s
1
+
…
α
n
s
n
=
0
implies
α
1
=
α
2
=
⋯
=
α
n
=
0
Note
0
∈
S
⟹
S
is a linear dependence
Linear dependence properties
#theorem
V
is a vector space over
F
,
A
⊆
V
1.
A
is a linear dependence
2.
∃
v
∈
A
:
v
∈
s
p
(
A
∖
{
v
}
)
3.
∃
v
∈
A
:
s
p
(
A
)
=
s
p
(
A
∖
{
v
}
)
(
1
)
⟺
(
2
)
⟺
(
3
)
Proof:
1.
Let
(
1
)
Let
α
1
≠
0
by linear dependence
α
1
v
1
+
⋯
+
α
n
v
n
=
0
v
1
=
(
−
α
2
α
1
)
v
2
+
⋯
+
(
−
a
n
a
1
)
v
n
∀
i
∈
[
2
,
n
]
:
v
i
∈
A
∧
v
i
≠
v
1
⟹
v
1
∈
s
p
(
A
∖
{
v
1
}
)
(
2
)
⟹
(
1
)
⟹
(
2
)
2.
Let
(
2
)
A
∖
{
v
}
⊆
A
⟹
s
p
(
A
∖
{
v
}
)
⊆
s
p
(
A
)
Let
u
∈
s
p
(
A
)
u
=
∑
i
=
1
n
α
i
a
→
i
If
∀
i
∈
[
1
,
n
]
:
v
≠
a
i
⟹
u
∈
s
p
(
A
∖
{
v
}
)
If
∃
i
∈
[
1
,
n
]
:
v
=
a
i
Let
i
=
1
by commutativity of addition
,
v
=
a
→
1
v
∈
s
p
(
A
∖
{
v
}
)
⟹
v
=
∑
j
=
2
n
β
j
a
~
j
⟹
u
=
α
1
∑
j
=
1
n
β
j
a
~
j
+
∑
j
=
2
n
α
j
a
→
j
∀
i
∈
[
1
,
n
]
,
j
∈
[
2
,
n
]
:
(
a
~
i
∈
A
∖
{
v
}
∧
a
→
j
∈
A
∖
{
v
}
)
⟹
u
∈
s
p
(
A
∖
{
v
}
)
⟹
s
p
(
A
)
⊆
s
p
(
A
∖
{
v
}
)
⟹
s
p
(
A
)
=
s
p
(
A
∖
{
v
}
)
3.
Let
(
3
)
v
∈
A
⟹
A
⊆
s
p
(
A
)
v
∈
s
p
(
A
)
⟹
v
∈
s
p
(
A
)
∖
{
v
}
⟹
v
=
α
1
a
→
1
+
…
α
n
a
→
n
v
+
(
−
α
1
)
a
→
1
+
…
(
−
α
n
)
a
→
n
=
0
v
=
1
⋅
v
⟹
{
1
,
−
α
1
,
…
,
−
α
n
}
is a non-trivial linear combination
⟹
A
is a linear dependence
⟹
(
2
)
⟹
(
3
)
(
1
)
⟹
(
2
)
⟹
(
3
)
⟹
(
1
)
⟹
(
1
)
⟺
(
2
)
⟺
(
3
)
Linear independence properties
#theorem
V
is a vector space over
F
1.
A
⊆
V
is a linear independence
,
v
∈
V
,
v
∉
A
v
∉
s
p
(
A
)
⟺
A
∪
{
v
}
is a linear independence
2.
A
⊆
V
is a linear independence
,
v
∈
A
s
p
(
A
∖
{
v
}
)
≠
s
p
(
A
)
Proof:
1.
Let
v
∉
s
p
(
A
)
v
1
,
…
,
v
n
∈
A
∪
{
v
}
α
1
,
…
,
α
n
∈
F
α
1
v
1
+
⋯
+
α
n
v
n
=
0
If
∀
i
∈
[
1
,
n
]
:
v
≠
v
i
⟹
α
1
=
⋯
=
α
n
=
0
If
∃
i
∈
[
1
,
n
]
:
v
=
v
i
Let
i
=
1
by commutativity of addition
,
v
=
v
1
α
1
v
+
α
2
v
2
+
⋯
+
α
n
v
n
=
0
α
1
v
=
−
α
2
v
2
−
⋯
−
α
n
v
n
⟹
α
1
v
∈
s
p
(
A
)
{
α
1
v
∈
s
p
(
A
)
v
∉
s
p
(
A
)
⟹
α
1
=
0
⟹
α
1
=
⋯
=
α
n
=
0
⟹
A
∪
{
v
}
is a linear independence
2.
v
∈
A
⟹
v
∈
s
p
(
A
)
v
∈
A
⟹
(
A
∖
{
v
}
)
∪
{
v
}
=
A
A
is a linear independence
⟹
A
∖
{
v
}
is a linear independence
(
1
)
⟹
v
∉
s
p
(
A
∖
{
v
}
)
{
v
∈
s
p
(
A
)
v
∉
s
p
(
A
∖
{
v
}
)
⟹
s
p
(
A
)
≠
s
p
(
A
∖
{
v
}
)