Linear-1 6

Linear-1 6

sp(A)sp(B)?ABNo:A={(10)},B={(20)}AB?sp(A)sp(B)Yes:S=sp(S)S is a vector subspace of Vsp({(01)})+sp({(01)})=sp({(01),(10)})

Sum of spans is a span of union #lemma

Prove: sp(A)+sp(B)=sp(AB)Proof:Let vsp(A)+sp(B)v=i=1nαiuiA(AB)+i=1kβiwiB(AB)v(AB)sp(A)+sp(B)sp(AB)Let vsp(AB)v=i=1nαivii[1,n]:viAviBLet’s reorder sum the following way:v=i=1kαiviviA+i=k+1nαiviviBv=usp(A)+wsp(B)vsp(A)+sp(B)sp(AB)sp(A)+sp(B)

Linear dependence/independence #definition

V is a vector space over F,SVS is called linear dependence if exists1,s2,,snSα1,α2,,αnFsuch that α1s1+αnsn=0S is called linear independence if for alls1,s2,,snSα1,α2,,αnFsuch that α1s1+αnsn=0implies α1=α2==αn=0

Note

0SS is a linear dependence

Linear dependence properties #theorem

V is a vector space over F,AV1.A is a linear dependence2.vA:vsp(A{v})3.vA:sp(A)=sp(A{v})(1)(2)(3)Proof:1.Let (1)Let α10 by linear dependenceα1v1++αnvn=0v1=(α2α1)v2++(ana1)vni[2,n]:viAviv1v1sp(A{v1})(2)(1)(2)2.Let (2)A{v}Asp(A{v})sp(A)Let usp(A)u=i=1nαiaiIf i[1,n]:vaiusp(A{v})If i[1,n]:v=aiLet i=1 by commutativity of addition,v=a1vsp(A{v})v=j=2nβja~ju=α1j=1nβja~j+j=2nαjaji[1,n],j[2,n]:(a~iA{v}ajA{v})usp(A{v})sp(A)sp(A{v})sp(A)=sp(A{v})3.Let (3)vAAsp(A)vsp(A)vsp(A){v}v=α1a1+αnanv+(α1)a1+(αn)an=0v=1v{1,α1,,αn} is a non-trivial linear combinationA is a linear dependence(2)(3)(1)(2)(3)(1)(1)(2)(3)

Linear independence properties #theorem

V is a vector space over F1.AV is a linear independence,vV,vAvsp(A)A{v} is a linear independence2.AV is a linear independence,vAsp(A{v})sp(A)Proof:1.Let vsp(A)v1,,vnA{v}α1,,αnFα1v1++αnvn=0If i[1,n]:vviα1==αn=0If i[1,n]:v=viLet i=1 by commutativity of addition,v=v1α1v+α2v2++αnvn=0α1v=α2v2αnvnα1vsp(A){α1vsp(A)vsp(A)α1=0α1==αn=0A{v} is a linear independence2.vAvsp(A)vA(A{v}){v}=AA is a linear independenceA{v} is a linear independence(1)vsp(A{v}){vsp(A)vsp(A{v})sp(A)sp(A{v})