Linear-1 7

Linear-1 7

Interchangeability of LID #lemma

Let vector space V over FLet AV linear independence ,BV,sp(B)=VThenaAbB:bA{a}(A{a}){b} is a linear independenceProof:Let aA:bB:bA{a}(A{a}){b} is a linear dependenceIf bA{a}bsp({a}))A is a linear independenceA{a} is a linear independenceIf bA{a}[bsp(A{a})(A{a}){b} is a linear independence]bsp(A{a})bB:bsp(A{a})Bsp(A{a})sp(B)sp(A{a})Vsp(A{a})AVV=sp(A{a})A is a linear independencesp(A{a})sp(A)Vsp(A{a})VContradiction!

LID is not larger than the spanning set #lemma

Let vector space V over FV is finitely generated: X:|X|=nsp(X)=VLet AV linear independence ,BV,sp(B)=VThen |A||B|Proof:Let |B|=nB={b1,b2,bn}Let |A|>|B|A={a1,a2,,an+1,}By the lemma above:b1B:bA{a1}(A{a1}){b1} is a linear independenceBy induction: (A{a1,a2,,an})B is a linear independenceLet C=(A{a1,a2,,an})B,BCBy the lemma above: bxB:bxC{an+1}Contradiction!|A||B|Let B be an infinite setCV:|C|=nsp(C)=V|A||C||B||A||B|

Basis of the vector space #definition

Let BV over Fsp(B)=VB is a linear independence

Dimension of the vector space #definition

B is the basis of V over FDimension of V over F isdimFV=|B|

Dimensions of bases #lemma

Let B,C be two bases of VThen |B|=|C|Proof:C is a linear independence and sp(B)=V|C||B|B is a linear independence and sp(C)=V|B||C||B|=|C|

Example

V=R2 over RA={(01),(10)} is a basis of VMore than that, it is called the standard basis of VdimRR2=2

Standard basis #definition

Let V=Fn over F{e1,,en} is called standard basis of VWhere k[1,n]:(ei)k={1k=i0otherwise

Basis properties #lemma

Let V be a finitely generated vector space over FThen 1.A:A is basis of V2.B is a basis of VB is a maximal linear independence in V3.B is a basis of VB is a minimal set generating V

"Of the three" #lemma

BV1.sp(B)=V2.B is a linear independence3.|B|=dimVIf two out of three are true, then all are trueProof:(1) and (2)(3) by definition of basisLet (2) and (3)B is a linear independence,|B|=dimVBVB is a linear independence|B|=nB={b1,b2,,bn}Let sp(B)VvV:vsp(B)B{v} is a linear independenceLet C be a basis of V|B|=dimV=|C|sp(C)=V and |C|<|B{v}|Contradiction!sp(B)=VLet (1) and (3)sp(B)=V and |B|=dimVLet C be a basis of V|C|=dimV=|B|Let B be a linear dependencevV:sp(B{v})=sp(B)=Vsp(B{v})=V|C|>|B{v}|Contradiction!B is a linear independence
dimV=n{A is a linear independence|A|nsp(A)=V|A|n

"Useful" #lemma

Let V be a finitely generated vector space over FU,WV vector subspaces of VThen UWdimUdimWU=W(UWdimU=dimW)Proof:It is obvious that U=W(UWdimU=dimW)Now let UWdimU=dimW=nB={u1,u2,,un} which is a basis of UBUWB is a linear independencedimW=|B|U=sp(B)=WU=W

Dimension theorem

Let V be a finitely generated vector space over FU,WVvector subspaces of VThen dim(U+W)=dim(U)+dim(W)dim(UW)