Linear-1 8
Dimension theorem #theorem
Let V be a finitely generated vector space U , W ⊆ V - vector subspaces of V Then d i m ( U + W ) = d i m ( U ) + d i m ( W ) − d i m ( U ∩ W ) Proof: Let B be a basis of U ∩ W , B = { v 1 , v 2 , … , v n } U ∩ W ⊆ U , W ⟹ It is possible to increase B to the basis of U and W Basis of U : B U = { v 1 , v 2 , … , v n , u n + 1 , … , u n + k } Basis of W : B W = { v 1 , v 2 , … , v n , w n + 1 , … , w n + t } d i m ( U ∩ W ) = n d i m ( U ) = n + k d i m ( W ) = n + t B ~ = { v 1 , … , v n , u n + 1 , … , u n + k , w n + 1 , … , w n + t } U + W = s p ( B U ) + s p ( B W ) = s p ( B U ∪ B W ) = s p ( B ~ ) ⟹ s p ( B ~ ) = U + W ( α 1 , … , α n , β 1 , … , β k , γ 1 , … , γ t ) ⋅ ( v 1 , … , v n , u n + 1 , … , u n + k , w n + 1 , … , w n + t ) T = 0 ( α 1 , … , α n , β 1 , … , β k ) ⋅ ( v 1 , … , v n , u n + 1 , … , u n + k ) T ⏟ Linear combination of B U = − ( γ 1 , … , γ t ) ⋅ ( w n + 1 , … , w n + t ) T − ( γ 1 , … , γ t ) ⋅ ( w n + 1 , … , w n + t ) T ∈ s p ( B U ) = U ⟹ − ( γ 1 , … , γ t ) ⋅ ( w n + 1 , … , w n + t ) T ∈ U ∩ W ⟹ − ( γ 1 , … , γ t ) ⋅ ( w n + 1 , … , w n + t ) T = ( δ 1 , … , δ n ) ⋅ ( v 1 , … , v n ) T ⟹ ( α 1 , … , α n , β 1 , … , β k ) ⋅ ( v 1 , … , v n , u n + 1 , … , u n + k ) T = ( δ 1 , … , δ n ) ⋅ ( v 1 , … , v n ) T ⟹ ( α 1 − d 1 , … , α n − δ n , β 1 , … , β k ) ⋅ ( v 1 , … , v n , u n + 1 , … , u n + k ) T ⏟ Linear combination of B U = 0 ? ? ?
Uniqueness of linear combination #lemma
Let V be a finitely generated vector space over F B = { v 1 , … , v n } − basis of V ⟹ ∀ v ∈ V : ∃ ! ( α 1 , … , α n ) ∈ F , ( v 1 , … , v n ) ∈ B : ∑ i = 1 n α i v i = v Proof: s p ( B ) = V Let v ∈ s p ( B ) Let v = α 1 v 1 + ⋯ + α n v n Let v = β 1 v 1 + ⋯ + β n v n ∑ i = 1 n α i v i = ∑ i = 1 n β i v i ∑ i = 1 n ( α i − β i ) v i = 0 B is a linear independence ⟹ ∀ i ∈ [ 1 , n ] : α i − β i = 0 ⟹ α i = β i ⟹ ∃ ! ( α 1 , … , α n ) ∈ F , ( v 1 , … , v n ) ∈ B : ∑ i = 1 n α i v i = v
Let A ∈ F m × n Matrix columns space C ( A ) = s p ( { C 1 ( A ) , … , C n ( A ) } ) Matrix rows space R ( A ) = s p ( { R 1 ( A ) , … , R m ( A ) } ) Matrix zero space N ( A ) = { v ∈ F n | A v = 0 } Example
A = ( 1 2 3 4 5 6 ) C ( A ) = s p ( { ( 1 4 ) , ( 2 5 ) , ( 3 6 ) } ) ( 1 2 3 0 4 5 6 0 ) → ( 1 2 3 0 0 3 6 0 ) ⟹ { ( 1 4 ) , ( 2 5 ) } is a basis of C ( A ) R ( A ) = s p ( { ( 1 2 3 ) , ( 4 5 6 ) } ) ( 1 4 0 2 5 0 3 6 0 ) → ( 1 4 0 0 3 0 0 0 0 ) ⟹ d i m ( R ( A ) ) = 2 ( 1 2 3 0 4 5 6 0 ) → ( 1 2 3 0 0 1 2 0 ) ⟹ A v = 0 ⟺ v = ( t − 2 t t ) ⟹ N ( A ) = { ( t − 2 t t ) | t ∈ R } = s p ( { ( 1 − 2 1 ) } )
Matrix multiplication narrows its spaces #lemma
You can't use 'macro parameter character #' in math mode \displaylines{ A \in \mathbb{F}^{m \times n}, B \in \mathbb{F}^{n \times m} \\ C(AB) \subseteq C(A) \\ R(AB) \subseteq R(B) \\ \\ \text{Proof:} \\ C_{i}(AB) = \sum_{i=1}^{k} \alpha_{i}C_{i}(A) \implies C_{i}(AB) \in C(A) \\ \forall i \in [1, n]: C_{i}(AB) \in C(A) \implies C(AB) = sp(\Set{ C_{i}(AB) }) \subseteq C(A) \\ \text{Proof for R(AB) is TODO by yourself} \\ } $$--- ## Column space and equations system #lemma \displaylines{ A \in \mathbb{F}^{m \times n}, B \in \mathbb{F}^{n \times m} \\ C(AB) \subseteq C(A) \\ R(AB) \subseteq R(B) \\ \\ \text{Proof:} \\ C_{i}(AB) = \sum_{i=1}^{k} \alpha_{i}C_{i}(A) \implies C_{i}(AB) \in C(A) \\ \forall i \in [1, n]: C_{i}(AB) \in C(A) \implies C(AB) = sp(\Set{ C_{i}(AB) }) \subseteq C(A) \\ \text{Proof for R(AB) is TODO by yourself} \\ } $$--- ## Column space and equations system #lemma \displaylines{
\text{Let } A \in \mathbb{F}^{n \times m}, b \in \mathbb{F}^{n} \
\text{Then } \exists x \in \mathbb{F}^{m}: Ax = b \iff b \in C(A) \
\
\text{Proof:} \
\exists x \in \mathbb{F}^{m}: Ax = b \iff \exists x \in \mathbb{F}^{m}: \sum_{i=1}^{m} \alpha_{i}C_{i}(A) = b \iff b \in C(A) \
}
You can't use 'macro parameter character #' in math mode --- ## Column space and row space dimensions #lemma --- ## Column space and row space dimensions #lemma \displaylines{
\text{Let } A \in \mathbb{F}^{m \times n} \
\text{Then } dim(C(A)) = dim(R(A)) \
\
\text{Proof:} \
\dots
}
You can't use 'macro parameter character #' in math mode --- ## Matrix rank #definition --- ## Matrix rank #definition \displaylines{
r(A) = rank(A) = dim(C(A)) = dim(R(A)) \
}
You can't use 'macro parameter character #' in math mode --- ## Matrix multiplication reduces rank #lemma --- ## Matrix multiplication reduces rank #lemma \displaylines{
\text{Let } A \in \mathbb{F}^{m \times n}, B \in \mathbb{F}^{n \times k} \
rank(AB) \leq rank(A), rank(AB) \leq rank(B) \
\
\text{Proof:} \
C(AB) \subseteq C(A) \implies sp(C(AB)) \subseteq sp(C(A)) \implies dim(C(AB)) \leq dim(C(A)) \
R(AB) \subseteq R(B) \implies sp(R(AB)) \subseteq sp(R(A)) \implies dim(R(AB)) \leq dim(R(A)) \
}
You can't use 'macro parameter character #' in math mode --- ## Invertible matrix multiplication does not reduce rank #lemma --- ## Invertible matrix multiplication does not reduce rank #lemma \displaylines{
\text{Let } A \in \mathbb{F}^{m \times n} \
B \in \mathbb{F}^{n \times n}, \exists B^{-1} \implies rank(AB) = rank(A) \
B \in \mathbb{F}^{m \times m}, \exists B^{-1} \implies rank(BA) = rank(B) \
\
\text{Proof:} \
rank(A) = rank(ABB^{-1}) \leq rank(AB) \implies rank(AB) = rank(A) \
rank(B) = rank(B^{-1}BA) \leq rank(BA) \implies rank(BA) = rank(B) \
}
You can't use 'macro parameter character #' in math mode --- ## Row-equality is equivalent to rank equality #lemma --- ## Row-equality is equivalent to rank equality #lemma \displaylines{
\text{Let } A \in \mathbb{F}^{m \times n} \
\text{Let } B \text{ row-equal to } A \
\text{Then } rank(A) = rank(B) \
\
\text{Proof:} \
B = \prod_{i=1}^{k} E_{i} A \
\forall i \in [1, k]: \exists E_{i}^{-1} \implies rank(A) = rank(\prod_{i=1}^{k} E_{i} A) = rank(B) \
\implies rank(A) = rank(CF(A)) \
}
You can't use 'macro parameter character #' in math mode --- ## Invertible matrix is full-ranked #lemma --- ## Invertible matrix is full-ranked #lemma \displaylines{
\text{Let } A \in \mathbb{F}^{n \times n} \
\exists A^{-1} \iff rank(A) = n \
\
\text{Proof:} \
\exists A^{-1} \implies CF(A) = I \
rank(A) = rank(CF(A)) \implies rank(A) = rank(CF(A)) = rank(I) = n \
\implies rank(A) = n \
rank(A) = n \implies rank(CF(A)) = n \implies CF(A) = I \
\implies \exists A^{-1} \
}
You can't use 'macro parameter character #' in math mode --- ## Dimension theorem for matrices #lemma --- ## Dimension theorem for matrices #lemma \displaylines{
\text{Let } A \in \mathbb{F}^{m \times n} \
rank(A) + dim(N(A)) = n \
}
− − −