Linear-1 8

Linear-1 8

Dimension theorem #theorem

Let V be a finitely generated vector spaceU,WV - vector subspaces of VThen dim(U+W)=dim(U)+dim(W)dim(UW)Proof:Let B be a basis of UW,B={v1,v2,,vn}UWU,WIt is possible to increase B to the basis of U and WBasis of U:BU={v1,v2,,vn,un+1,,un+k}Basis of W:BW={v1,v2,,vn,wn+1,,wn+t}dim(UW)=ndim(U)=n+kdim(W)=n+tB~={v1,,vn,un+1,,un+k,wn+1,,wn+t}U+W=sp(BU)+sp(BW)=sp(BUBW)=sp(B~)sp(B~)=U+W(α1,,αn,β1,,βk,γ1,,γt)(v1,,vn,un+1,,un+k,wn+1,,wn+t)T=0(α1,,αn,β1,,βk)(v1,,vn,un+1,,un+k)TLinear combination of BU=(γ1,,γt)(wn+1,,wn+t)T(γ1,,γt)(wn+1,,wn+t)Tsp(BU)=U(γ1,,γt)(wn+1,,wn+t)TUW(γ1,,γt)(wn+1,,wn+t)T=(δ1,,δn)(v1,,vn)T(α1,,αn,β1,,βk)(v1,,vn,un+1,,un+k)T=(δ1,,δn)(v1,,vn)T(α1d1,,αnδn,β1,,βk)(v1,,vn,un+1,,un+k)TLinear combination of BU=0???

Uniqueness of linear combination #lemma

Let V be a finitely generated vector space over FB={v1,,vn} basis of VvV:!(α1,,αn)F,(v1,,vn)B:i=1nαivi=vProof:sp(B)=VLet vsp(B)Let v=α1v1++αnvnLet v=β1v1++βnvni=1nαivi=i=1nβivii=1n(αiβi)vi=0B is a linear independencei[1,n]:αiβi=0αi=βi!(α1,,αn)F,(v1,,vn)B:i=1nαivi=v

Matrix spaces #definition

Let AFm×nMatrix columns space C(A)=sp({C1(A),,Cn(A)})Matrix rows space R(A)=sp({R1(A),,Rm(A)})Matrix zero space N(A)={vFn|Av=0}

Example

A=(123456)C(A)=sp({(14),(25),(36)})(12304560)(12300360){(14),(25)} is a basis of C(A)R(A)=sp({(123),(456)})(140250360)(140030000)dim(R(A))=2(12304560)(12300120)Av=0v=(t2tt)N(A)={(t2tt)|tR}=sp({(121)})

Matrix multiplication narrows its spaces #lemma

\displaylines{ A \in \mathbb{F}^{m \times n}, B \in \mathbb{F}^{n \times m} \\ C(AB) \subseteq C(A) \\ R(AB) \subseteq R(B) \\ \\ \text{Proof:} \\ C_{i}(AB) = \sum_{i=1}^{k} \alpha_{i}C_{i}(A) \implies C_{i}(AB) \in C(A) \\ \forall i \in [1, n]: C_{i}(AB) \in C(A) \implies C(AB) = sp(\Set{ C_{i}(AB) }) \subseteq C(A) \\ \text{Proof for R(AB) is TODO by yourself} \\ } $$--- ## Column space and equations system #lemma

\displaylines{
\text{Let } A \in \mathbb{F}^{n \times m}, b \in \mathbb{F}^{n} \
\text{Then } \exists x \in \mathbb{F}^{m}: Ax = b \iff b \in C(A) \
\
\text{Proof:} \
\exists x \in \mathbb{F}^{m}: Ax = b \iff \exists x \in \mathbb{F}^{m}: \sum_{i=1}^{m} \alpha_{i}C_{i}(A) = b \iff b \in C(A) \
}

--- ## Column space and row space dimensions #lemma

\displaylines{
\text{Let } A \in \mathbb{F}^{m \times n} \
\text{Then } dim(C(A)) = dim(R(A)) \
\
\text{Proof:} \
\dots
}

--- ## Matrix rank #definition

\displaylines{
r(A) = rank(A) = dim(C(A)) = dim(R(A)) \
}

--- ## Matrix multiplication reduces rank #lemma

\displaylines{
\text{Let } A \in \mathbb{F}^{m \times n}, B \in \mathbb{F}^{n \times k} \
rank(AB) \leq rank(A), rank(AB) \leq rank(B) \
\
\text{Proof:} \
C(AB) \subseteq C(A) \implies sp(C(AB)) \subseteq sp(C(A)) \implies dim(C(AB)) \leq dim(C(A)) \
R(AB) \subseteq R(B) \implies sp(R(AB)) \subseteq sp(R(A)) \implies dim(R(AB)) \leq dim(R(A)) \
}

--- ## Invertible matrix multiplication does not reduce rank #lemma

\displaylines{
\text{Let } A \in \mathbb{F}^{m \times n} \
B \in \mathbb{F}^{n \times n}, \exists B^{-1} \implies rank(AB) = rank(A) \
B \in \mathbb{F}^{m \times m}, \exists B^{-1} \implies rank(BA) = rank(B) \
\
\text{Proof:} \
rank(A) = rank(ABB^{-1}) \leq rank(AB) \implies rank(AB) = rank(A) \
rank(B) = rank(B^{-1}BA) \leq rank(BA) \implies rank(BA) = rank(B) \
}

--- ## Row-equality is equivalent to rank equality #lemma

\displaylines{
\text{Let } A \in \mathbb{F}^{m \times n} \
\text{Let } B \text{ row-equal to } A \
\text{Then } rank(A) = rank(B) \
\
\text{Proof:} \
B = \prod_{i=1}^{k} E_{i} A \
\forall i \in [1, k]: \exists E_{i}^{-1} \implies rank(A) = rank(\prod_{i=1}^{k} E_{i} A) = rank(B) \
\implies rank(A) = rank(CF(A)) \
}

--- ## Invertible matrix is full-ranked #lemma

\displaylines{
\text{Let } A \in \mathbb{F}^{n \times n} \
\exists A^{-1} \iff rank(A) = n \
\
\text{Proof:} \
\exists A^{-1} \implies CF(A) = I \
rank(A) = rank(CF(A)) \implies rank(A) = rank(CF(A)) = rank(I) = n \
\implies rank(A) = n \
rank(A) = n \implies rank(CF(A)) = n \implies CF(A) = I \
\implies \exists A^{-1} \
}

--- ## Dimension theorem for matrices #lemma

\displaylines{
\text{Let } A \in \mathbb{F}^{m \times n} \
rank(A) + dim(N(A)) = n \
}