Linear-1 9

Linear-1 9

Summary of previous topics

Let AFn×nA1CF(A)=Irank(A)=nColumns of A are a linear independenceRows of A are a linear independenceN(A)={0}!x:Ax=0b:!x:Ax=bb:!x:Ax=b

Linear transformation (linear map, linear mapping) #definition

V,U vector spaces over FFunction T:VU is called a linear transformationIf v1,v2V,αF:T(v1+αv2)=T(v1)+αT(v2)

Example

T:RRT(x)=x2T(2+2)=T(4)=16T(2)+T(2)=4+4=8T is not a linear transformation

Zero of linear transformation #lemma

Let T:VU be a linear transformationT(0V)=0UProof:T(0V)=T(0F0V)=0FT(0V)U=0U

Defining theorem for linear transformations #theorem

V,U vector spaces over FB={v1,,vn} basis of VLet u1,,unUExists a unique linear transformation T:VUsuch that: i[1,n]:T(vi)=uiProof:B is a basis of VvV:v=i=1nαiviLet T(v)=i=1nαiCoefficients from the linear combination of vuiHere should be some long proof that T is a linear transformation...T(i=1nαivi)=i=1nαiuiT(vi)=T(1vi)=1ui=ui

Example

T:R2R3v1=(23),v2=(12)T(v1)=(101),T(v2)=(111){v1,v2} is a basis of R2(xy)=αv1+βv2(21x32y){α=2xyβ=2y3xT(v)=T(xy)=(2xy)T(v1)+(2y3x)T(v2)==(2xy)(101)+(2y3x)(111)=(yx2y3xyx)
T:VUS:UWT,S are linear transformations(ST):VW is a linear transformationProof:TODO by yourself

Identity transformation #definition

Id:VVvV:Id(v)=v

Inverse transformation #definition

T:VU is a linear transformationT is called invertible if exists linear transformation S:UVsuch that (ST)=IdV(TS)=IdUS is then called an inverse of T

Invertibility of linear transformation #lemma

T is a linear transformationT is invertibleT is bijective

Homomorphism #definition

Linear transformation is also called homomorphism

Isomorphism #definition

Invertible linear transformation

Endomorphism #definition

Linear transformation from V to V

Automorphism #definition

Invertible endomorphism

Monomorphism #definition

Injective linear transformation

Epimorphism #definition

Surjective linear transformation