Random exams

T:R3R3T20,T3=0T20v3V:T2(v3)0T2(v3)0T(v3)0v30Let v1=T2(v3)0Let v2=T(v3)0Let αv1+βv2+γv3=0T(αv1+βv2+γv3)=αT(v1)+βT(v2)+γT(v3)=0αT3(v3)+βT2(v3)+γT(v3)=0βT2(v3)+γT(v3)=0T(βT2(v3)+γT(v3))=0βT3(v3)+γT2(v3)=0γT2(v3)=0γ=0βT2(v3)=0β=0αv1=0α=0B={v1,v2,v3} is a linear independenceB is a basis of R3[T]BB=([T(v1)]B||[T(v2)]B||[T(v3)]B||)=([T3(v3)]B||[T2(v3)]B||[T(v3)]B||)==([0]B||[v1]B||[v2]B||)=(010001000)
AC2×2AAT=0?A=0A=(a+bic+die+fig+hi)AAT=((a+bi)2+(c+di)2(a+bi)(e+fi)+(c+di)(g+hi)(a+bi)(e+fi)+(c+di)(g+hi)(e+fi)2+(g+hi)2)(a+bi)2=(a+bi)(a+bi)=a2+2abib2{a2+2abib2+c2+2cdid2=0ae+(af+be)ibf=0e2+2efif2+g2+2ghih2=0{a2+c2b2d2=0ab+cd=0aebf=0af+be=0e2+g2f2h2=0ef+gh=0Let A=(1+i1+i00)AAT=0,A0
Let V be a finitely generated vector spaceLet T:VV be a linear transformation such that linear transformations S:VV:ST=TSProve: B={v1,v2,,vn} bases of V:i[1,n]:{T(vi),vi} is a linear dependenceProof:Let B={v1,v2,,vn} be a basis of VLet by contradiction i[1,n]:{T(vi),vi} is a linear independenceB^={vi,T(vi),u3,u4,,un} basis of VBy the defining theorem exists linear transformation S:VV such that{S(vi)=S(T(vi))=vij[3,n]:S(uj)=0ST=TSvi=ST(vi)=TS(vi)=T(vi){vi,T(vi)} is a linear dependenceContradiction!i[1,n]:{vi,T(vi)} is a linear dependence
(aa2a),(0a+1a+1),(112),(aaa2+2a+1)Find all values of a such that v4sp({v1,v2,v3})(a01aaa+11a2aa+12a2+2a+1)(a01a0a+1000a+10a2+1)(a01a0a+100000a2+1)a2+1>0There are no solutionsaR:v4sp({v1,v2,v3})For all values of a find dimension of sp({v1,v2,v3,v4})v4sp({v1,v2,v3})Is {v1,v2,v3} linear independence?(a01aa+112aa+12)(a010a+10000)Let a=0(001010000)sp({v1,v2,v3})=sp({v2,v3})dim(sp({v1,v2,v3,v4}))=3Let a=1(101000000)sp({v1,v2,v3})=sp({v1})dim(sp({v1,v2,v3,v4}))=2Let a0,a1{a0a+10(a010a+10000)sp({v1,v2,v3})=sp({v1,v2})dim(sp({v1,v2,v3,v4}))=3
Let AFn×nLet B0Fn×n symmetric such that AB=BA=0Prove: dim(N(A)N(AT))0Proof:AB=0C(B)N(A)BA=0(BA)T=ATBT=ATB=0C(B)N(AT)C(B)N(A)N(AT)B0 is symmetrici[1,n]:Ci(B)0C(B){0}{0}C(B)N(A)N(AT)N(A)N(AT){0}Alternative proof:B0v0Fn:Bv0AB0v=0BvN(A)BA=0(BA)T=ATBT=ATB=0ATB0v=0BvN(AT)BvN(A)N(AT)N(A)N(AT){0}
B={1,x+x2,x3,x+x2} basis of R3[x]C={(1000),(0100),(0010),(1001)} basis of R2×2T:R3[x]R2×2[T]CB=(0000000200020000)Find T[T(1)]C=0T(1)=0[T(x+x2)]C=0T(x+x2)=0[T(x3)]C=0T(x3)=0[T(x+x2)]C=(0220)T(x+x2)=(0220)T(x+x2)+T(x+x2)=T(2x2)=2T(x2)=(0220)T(x2)=(0110)T(x+x2)T(x+x2)=T(2x)=2T(x)=(0220)T(x)=(0110)T(a+bx+cx2+dx3)=0+bT(x)+cT(x2)+0=(0bccb0)
Let A,BRn×nProve or disprove: N(A)C(B)={0}N(B)=N(AB)Proof:vRn:BvC(B)N(A)C(B)={0}v0Rn:ABv0N(AB)={0}Bv=0ABv=0N(B)N(AB)N(B)={0}N(B)=N(AB)Let ACn×nProve or disprove: AAT=0A=0Disproof:A=(1+i1+i00)0AAT=(1+i1+i00)(1+i01+i0)=(0000)=0Let ARn×nProve or disprove: AAT=0A=0Proof:AAT=0i[1,n]:(AAT)ii=0i[1,n]:(AAT)ii=k=1nAikAkiT=k=1nAik2=0i[1,n]:k[1,n]:Aik=0A=0
Let ARn×m,BRn×kProve or disprove: !CRk×m:A=BCrank(B)=kProof:Letij[1,k]:{Ci(B),Cj(B)} is a linear dependenceCANT USE JUST TWO! But the idea is correctLet {C1(B),C2(B)} be a linear dependence (WLOG)C2(B)=αC1(B)C1(A)=C1(BC)=C1(B)C11+αC1(B)C12+xLet C11=β,C12=γβC1(B)+αγC1(B)+x=C1(A)Let α=0γ can be anythingC is not uniqueContradiction!α0Let C11=β+1,C12=γ1αβC1(B)+C1(B)+αγC1(B)C1(B)+x=βC1(B)+αγC1(B)+x=C1(A)C is not uniqueContradiction!ij[1,k]:{Ci(B),Cj(B)} is a linear independencerank(B)=dim(C(B))=kLet T,S:VV be linear transformationsProve or disprove: Im(T)Im(S)=VT+S is injectiveDisproof:Let Im(T)Im(S)=VIm(T+S)Im(T)+Im(S)T((xy))=(x0)S((xy))=(0x)(T+S)(xy)=(xx)(T+S)((12))=(T+S)((13))T+S is not injectiveLet T,S:VV be linear transformationsProve or disprove: T+S is injectiveIm(T)+Im(S)=VProof:T+S is injectiveT+S is surjectiveV=Im(T+S)Im(T)+Im(S)VIm(T)+Im(S)=V