Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Random exams
T
:
R
3
→
R
3
T
2
≠
0
,
T
3
=
0
T
2
≠
0
⟹
∃
v
3
∈
V
:
T
2
(
v
3
)
≠
0
T
2
(
v
3
)
≠
0
⟹
T
(
v
3
)
≠
0
⟹
v
3
≠
0
Let
v
1
=
T
2
(
v
3
)
≠
0
Let
v
2
=
T
(
v
3
)
≠
0
Let
α
v
1
+
β
v
2
+
γ
v
3
=
0
⟹
T
(
α
v
1
+
β
v
2
+
γ
v
3
)
=
α
T
(
v
1
)
+
β
T
(
v
2
)
+
γ
T
(
v
3
)
=
0
⟹
α
T
3
(
v
3
)
+
β
T
2
(
v
3
)
+
γ
T
(
v
3
)
=
0
⟹
β
T
2
(
v
3
)
+
γ
T
(
v
3
)
=
0
⟹
T
(
β
T
2
(
v
3
)
+
γ
T
(
v
3
)
)
=
0
⟹
β
T
3
(
v
3
)
+
γ
T
2
(
v
3
)
=
0
⟹
γ
T
2
(
v
3
)
=
0
⟹
γ
=
0
⟹
β
T
2
(
v
3
)
=
0
⟹
β
=
0
⟹
α
v
1
=
0
⟹
α
=
0
⟹
B
=
{
v
1
,
v
2
,
v
3
}
is a linear independence
⟹
B
is a basis of
R
3
[
T
]
B
B
=
(
[
T
(
v
1
)
]
B
|
|
[
T
(
v
2
)
]
B
|
|
[
T
(
v
3
)
]
B
|
|
)
=
(
[
T
3
(
v
3
)
]
B
|
|
[
T
2
(
v
3
)
]
B
|
|
[
T
(
v
3
)
]
B
|
|
)
=
=
(
[
0
]
B
|
|
[
v
1
]
B
|
|
[
v
2
]
B
|
|
)
=
(
0
1
0
0
0
1
0
0
0
)
A
∈
C
2
×
2
A
A
T
=
0
⟹
?
A
=
0
A
=
(
a
+
b
i
c
+
d
i
e
+
f
i
g
+
h
i
)
⟹
A
A
T
=
(
(
a
+
b
i
)
2
+
(
c
+
d
i
)
2
(
a
+
b
i
)
(
e
+
f
i
)
+
(
c
+
d
i
)
(
g
+
h
i
)
(
a
+
b
i
)
(
e
+
f
i
)
+
(
c
+
d
i
)
(
g
+
h
i
)
(
e
+
f
i
)
2
+
(
g
+
h
i
)
2
)
(
a
+
b
i
)
2
=
(
a
+
b
i
)
(
a
+
b
i
)
=
a
2
+
2
a
b
i
−
b
2
⟹
{
a
2
+
2
a
b
i
−
b
2
+
c
2
+
2
c
d
i
−
d
2
=
0
a
e
+
(
a
f
+
b
e
)
i
−
b
f
=
0
e
2
+
2
e
f
i
−
f
2
+
g
2
+
2
g
h
i
−
h
2
=
0
⟹
{
a
2
+
c
2
−
b
2
−
d
2
=
0
a
b
+
c
d
=
0
a
e
−
b
f
=
0
a
f
+
b
e
=
0
e
2
+
g
2
−
f
2
−
h
2
=
0
e
f
+
g
h
=
0
Let
A
=
(
1
+
i
−
1
+
i
0
0
)
⟹
A
A
T
=
0
,
A
≠
0
Let
V
be a finitely generated vector space
Let
T
:
V
→
V
be a linear transformation such that
∀
linear transformations
S
:
V
→
V
:
S
T
=
T
S
Prove:
∀
B
=
{
v
1
,
v
2
,
…
,
v
n
}
bases of
V
:
∀
i
∈
[
1
,
n
]
:
{
T
(
v
i
)
,
v
i
}
is a linear dependence
Proof:
Let
B
=
{
v
1
,
v
2
,
…
,
v
n
}
be a basis of
V
Let by contradiction
∃
i
∈
[
1
,
n
]
:
{
T
(
v
i
)
,
v
i
}
is a linear independence
⟹
∃
B
^
=
{
v
i
,
T
(
v
i
)
,
u
3
,
u
4
,
…
,
u
n
}
basis of
V
⟹
By the defining theorem exists linear transformation
S
:
V
→
V
such that
{
S
(
v
i
)
=
S
(
T
(
v
i
)
)
=
v
i
∀
j
∈
[
3
,
n
]
:
S
(
u
j
)
=
0
S
T
=
T
S
⟹
v
i
=
S
T
(
v
i
)
=
T
S
(
v
i
)
=
T
(
v
i
)
⟹
{
v
i
,
T
(
v
i
)
}
is a linear dependence
−
Contradiction!
⟹
∀
i
∈
[
1
,
n
]
:
{
v
i
,
T
(
v
i
)
}
is a linear dependence
(
a
a
2
a
)
,
(
0
a
+
1
a
+
1
)
,
(
1
1
2
)
,
(
a
a
a
2
+
2
a
+
1
)
Find all values of
a
such that
v
4
∈
s
p
(
{
v
1
,
v
2
,
v
3
}
)
(
a
0
1
a
a
a
+
1
1
a
2
a
a
+
1
2
a
2
+
2
a
+
1
)
→
(
a
0
1
a
0
a
+
1
0
0
0
a
+
1
0
a
2
+
1
)
→
(
a
0
1
a
0
a
+
1
0
0
0
0
0
a
2
+
1
)
a
2
+
1
>
0
⟹
There are no solutions
⟹
∀
a
∈
R
:
v
4
∉
s
p
(
{
v
1
,
v
2
,
v
3
}
)
For all values of
a
find dimension of
s
p
(
{
v
1
,
v
2
,
v
3
,
v
4
}
)
v
4
∉
s
p
(
{
v
1
,
v
2
,
v
3
}
)
Is
{
v
1
,
v
2
,
v
3
}
linear independence?
(
a
0
1
a
a
+
1
1
2
a
a
+
1
2
)
→
⋯
→
(
a
0
1
0
a
+
1
0
0
0
0
)
Let
a
=
0
(
0
0
1
0
1
0
0
0
0
)
⟹
s
p
(
{
v
1
,
v
2
,
v
3
}
)
=
s
p
(
{
v
2
,
v
3
}
)
⟹
d
i
m
(
s
p
(
{
v
1
,
v
2
,
v
3
,
v
4
}
)
)
=
3
Let
a
=
−
1
(
−
1
0
1
0
0
0
0
0
0
)
⟹
s
p
(
{
v
1
,
v
2
,
v
3
}
)
=
s
p
(
{
v
1
}
)
⟹
d
i
m
(
s
p
(
{
v
1
,
v
2
,
v
3
,
v
4
}
)
)
=
2
Let
a
≠
0
,
a
≠
−
1
{
a
≠
0
a
+
1
≠
0
⟹
(
a
0
1
0
a
+
1
0
0
0
0
)
⟹
s
p
(
{
v
1
,
v
2
,
v
3
}
)
=
s
p
(
{
v
1
,
v
2
}
)
⟹
d
i
m
(
s
p
(
{
v
1
,
v
2
,
v
3
,
v
4
}
)
)
=
3
Let
A
∈
F
n
×
n
Let
B
≠
0
∈
F
n
×
n
symmetric such that
A
B
=
B
A
=
0
Prove:
d
i
m
(
N
(
A
)
∩
N
(
A
T
)
)
≠
0
Proof:
A
B
=
0
⟹
C
(
B
)
⊆
N
(
A
)
B
A
=
0
⟹
(
B
A
)
T
=
A
T
B
T
=
A
T
B
=
0
⟹
C
(
B
)
⊆
N
(
A
T
)
⟹
C
(
B
)
⊆
N
(
A
)
∩
N
(
A
T
)
B
≠
0
is symmetric
⟹
∃
i
∈
[
1
,
n
]
:
C
i
(
B
)
≠
0
⟹
C
(
B
)
≠
{
0
}
{
0
}
⊂
C
(
B
)
⊆
N
(
A
)
∩
N
(
A
T
)
⟹
N
(
A
)
∩
N
(
A
T
)
≠
{
0
}
Alternative proof:
B
≠
0
⟹
∃
v
≠
0
∈
F
n
:
B
v
≠
0
A
B
⏟
0
v
=
0
⟹
B
v
∈
N
(
A
)
B
A
=
0
⟹
(
B
A
)
T
=
A
T
B
T
=
A
T
B
=
0
⟹
A
T
B
⏟
0
v
=
0
⟹
B
v
∈
N
(
A
T
)
⟹
B
v
∈
N
(
A
)
∩
N
(
A
T
)
⟹
N
(
A
)
∩
N
(
A
T
)
≠
{
0
}
B
=
{
1
,
x
+
x
2
,
x
3
,
−
x
+
x
2
}
basis of
R
3
[
x
]
C
=
{
(
1
0
0
0
)
,
(
0
1
0
0
)
,
(
0
0
1
0
)
,
(
1
0
0
1
)
}
basis of
R
2
×
2
T
:
R
3
[
x
]
→
R
2
×
2
[
T
]
C
B
=
(
0
0
0
0
0
0
0
−
2
0
0
0
2
0
0
0
0
)
Find
T
[
T
(
1
)
]
C
=
0
⟹
T
(
1
)
=
0
[
T
(
x
+
x
2
)
]
C
=
0
⟹
T
(
x
+
x
2
)
=
0
[
T
(
x
3
)
]
C
=
0
⟹
T
(
x
3
)
=
0
[
T
(
−
x
+
x
2
)
]
C
=
(
0
−
2
2
0
)
⟹
T
(
−
x
+
x
2
)
=
(
0
−
2
2
0
)
T
(
x
+
x
2
)
+
T
(
−
x
+
x
2
)
=
T
(
2
x
2
)
=
2
T
(
x
2
)
=
(
0
−
2
2
0
)
⟹
T
(
x
2
)
=
(
0
−
1
1
0
)
T
(
x
+
x
2
)
−
T
(
−
x
+
x
2
)
=
T
(
2
x
)
=
2
T
(
x
)
=
(
0
2
−
2
0
)
⟹
T
(
x
)
=
(
0
1
−
1
0
)
⟹
T
(
a
+
b
x
+
c
x
2
+
d
x
3
)
=
0
+
b
T
(
x
)
+
c
T
(
x
2
)
+
0
=
(
0
b
−
c
c
−
b
0
)
Let
A
,
B
∈
R
n
×
n
Prove or disprove:
N
(
A
)
∩
C
(
B
)
=
{
0
}
⟹
N
(
B
)
=
N
(
A
B
)
Proof:
∀
v
∈
R
n
:
B
v
∈
C
(
B
)
N
(
A
)
∩
C
(
B
)
=
{
0
}
⟹
∀
v
≠
0
∈
R
n
:
A
B
v
≠
0
⟹
N
(
A
B
)
=
{
0
}
B
v
=
0
⟹
A
B
v
=
0
⟹
N
(
B
)
⊆
N
(
A
B
)
⟹
N
(
B
)
=
{
0
}
⟹
N
(
B
)
=
N
(
A
B
)
Let
A
∈
C
n
×
n
Prove or disprove:
A
A
T
=
0
⟹
A
=
0
Disproof:
A
=
(
1
+
i
−
1
+
i
0
0
)
≠
0
A
A
T
=
(
1
+
i
−
1
+
i
0
0
)
(
1
+
i
0
−
1
+
i
0
)
=
(
0
0
0
0
)
=
0
Let
A
∈
R
n
×
n
Prove or disprove:
A
A
T
=
0
⟹
A
=
0
Proof:
A
A
T
=
0
⟹
∀
i
∈
[
1
,
n
]
:
(
A
A
T
)
i
i
=
0
⟹
∀
i
∈
[
1
,
n
]
:
(
A
A
T
)
i
i
=
∑
k
=
1
n
A
i
k
A
k
i
T
=
∑
k
=
1
n
A
i
k
2
=
0
⟹
∀
i
∈
[
1
,
n
]
:
∀
k
∈
[
1
,
n
]
:
A
i
k
=
0
⟹
A
=
0
Let
A
∈
R
n
×
m
,
B
∈
R
n
×
k
Prove or disprove:
∃
!
C
∈
R
k
×
m
:
A
=
B
C
⟹
r
a
n
k
(
B
)
=
k
Proof:
Let
∃
i
≠
j
∈
[
1
,
k
]
:
{
C
i
(
B
)
,
C
j
(
B
)
}
is a linear dependence
CANT USE JUST TWO! But the idea is correct
Let
{
C
1
(
B
)
,
C
2
(
B
)
}
be a linear dependence (WLOG)
⟹
C
2
(
B
)
=
α
C
1
(
B
)
C
1
(
A
)
=
C
1
(
B
C
)
=
C
1
(
B
)
C
11
+
α
C
1
(
B
)
C
12
+
x
Let
C
11
=
β
,
C
12
=
γ
β
C
1
(
B
)
+
α
γ
C
1
(
B
)
+
x
=
C
1
(
A
)
Let
α
=
0
⟹
γ
can be anything
⟹
C
is not unique
−
Contradiction!
⟹
α
≠
0
Let
C
11
=
β
+
1
,
C
12
=
γ
−
1
α
β
C
1
(
B
)
+
C
1
(
B
)
+
α
γ
C
1
(
B
)
−
C
1
(
B
)
+
x
=
β
C
1
(
B
)
+
α
γ
C
1
(
B
)
+
x
=
C
1
(
A
)
⟹
C
is not unique
−
Contradiction!
⟹
∀
i
≠
j
∈
[
1
,
k
]
:
{
C
i
(
B
)
,
C
j
(
B
)
}
is a linear independence
⟹
r
a
n
k
(
B
)
=
d
i
m
(
C
(
B
)
)
=
k
Let
T
,
S
:
V
→
V
be linear transformations
Prove or disprove:
I
m
(
T
)
⊕
I
m
(
S
)
=
V
⟹
T
+
S
is injective
Disproof:
Let
I
m
(
T
)
⊕
I
m
(
S
)
=
V
I
m
(
T
+
S
)
⊆
I
m
(
T
)
+
I
m
(
S
)
T
(
(
x
y
)
)
=
(
x
0
)
S
(
(
x
y
)
)
=
(
0
x
)
(
T
+
S
)
(
x
y
)
=
(
x
x
)
(
T
+
S
)
(
(
1
2
)
)
=
(
T
+
S
)
(
(
1
3
)
)
⟹
T
+
S
is not injective
Let
T
,
S
:
V
→
V
be linear transformations
Prove or disprove:
T
+
S
is injective
⟹
I
m
(
T
)
+
I
m
(
S
)
=
V
Proof:
T
+
S
is injective
⟹
T
+
S
is surjective
⟹
V
=
I
m
(
T
+
S
)
⊆
I
m
(
T
)
+
I
m
(
S
)
⊆
V
⟹
I
m
(
T
)
+
I
m
(
S
)
=
V