Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Theorems and proofs
(1) Short criterion for a vector subspace
Let
V
be a vector space over
F
Let
W
⊆
V
1.
0
V
∈
W
2.
∀
α
∈
F
,
∀
u
,
v
∈
W
:
u
+
α
v
∈
W
1
and
2
⟺
W
is a vector subspace of
V
Note:
2
can be separated into two properties:
2.1
∀
u
,
v
∈
W
:
u
+
v
∈
W
2.2
∀
α
∈
F
,
∀
v
∈
W
:
α
v
∈
W
Proof:
Let
W
be a vector subspace of
V
⟹
W
is a vector space
⟹
0
W
∈
W
0
W
is neutral to addition in
W
:
0
W
=
0
W
+
0
W
⟹
0
W
+
(
−
0
W
)
⏟
0
V
=
0
W
+
(
0
W
+
(
−
0
W
)
⏟
0
V
)
⟹
0
V
=
0
W
+
0
V
0
V
is neutral to addition in
V
⟹
0
W
=
0
V
⟹
0
V
∈
W
W
is a vector space
⟹
W
is closed for addition and multiplication by scalar
⟹
∀
α
∈
F
,
∀
u
,
v
∈
W
:
u
+
α
v
∈
W
Let
1
and
2
Let us prove that
W
is a vector space over
F
by checking 7 vector space axioms:
a
.
Closure on addition and multiplication by scalar
b
.
Commutativity
c
.
Associativity
d
.
Distributivity
e
.
Neutral element for addition
f
.
Inverse on addition
g
.
Neutral element for multiplication by scalar
1
and
2
⟹
W
is closed on addition and multiplication by scalar
⟹
a
∀
α
∈
F
,
∀
v
1
,
v
2
∈
W
:
v
1
,
v
2
∈
V
⟹
{
v
1
+
v
2
=
v
2
+
v
1
α
v
1
=
v
1
α
⟹
b
∀
α
,
β
∈
F
,
∀
v
1
,
v
2
,
v
3
∈
W
:
v
1
,
v
2
,
v
3
∈
V
⟹
{
(
v
1
+
v
2
)
+
v
3
=
v
1
+
(
v
2
+
v
3
)
α
(
β
v
)
=
(
α
β
)
v
⟹
c
∀
α
,
β
∈
F
,
∀
v
1
,
v
2
∈
W
:
v
1
,
v
2
∈
V
⟹
{
α
(
v
1
+
v
2
)
=
α
v
1
+
α
v
2
(
α
+
β
)
v
=
α
v
+
β
v
⟹
d
1
⟹
∀
v
∈
W
:
0
v
+
v
=
v
∈
W
⟹
e
∀
v
∈
W
:
v
∈
V
⟹
1
F
⋅
v
=
v
∈
W
⟹
g
∀
v
∈
W
:
v
∈
V
⟹
∃
−
v
∈
V
:
v
+
(
−
v
)
=
0
V
1
F
v
+
(
−
1
F
)
v
=
(
1
F
+
(
−
1
F
)
)
v
=
0
V
⟹
−
v
=
−
1
F
v
⟹
−
v
∈
W
⟹
f
⟹
W
is a vector space
⟹
W
is a vector subspace of
V
(2) Elementary row operations
Let
A
∈
F
m
×
n
Let
p
be an elementary row operation
Then
p
(
A
)
=
p
(
I
)
A
Proof:
Let p be scalar row multiplication
α
∈
F
,
i
∈
[
1
,
m
]
:
∀
X
∈
F
m
×
n
:
R
i
(
p
(
X
)
)
=
α
R
i
(
X
)
Let
k
≠
i
R
k
(
p
(
I
)
A
)
=
R
k
(
p
(
I
)
)
A
=
R
k
(
I
)
A
=
e
k
A
=
R
k
(
A
)
=
R
k
(
p
(
A
)
)
R
i
(
p
(
I
)
A
)
=
R
i
(
p
(
I
)
)
A
=
α
R
i
(
I
)
A
=
α
e
i
A
=
α
R
i
(
A
)
=
R
i
(
p
(
A
)
)
⟹
p
(
A
)
=
p
(
I
)
A
Let
p
be row addition
α
∈
F
,
i
≠
j
∈
[
1
,
m
]
:
∀
X
∈
F
m
×
n
:
R
i
(
p
(
X
)
)
=
R
i
(
X
)
+
α
R
j
(
X
)
Let
k
≠
i
R
k
(
p
(
I
)
A
)
=
R
k
(
p
(
I
)
)
A
=
R
k
(
I
)
A
=
e
k
A
=
R
k
(
A
)
=
R
k
(
p
(
A
)
)
R
i
(
p
(
I
)
A
)
=
R
i
(
p
(
I
)
)
A
=
(
R
i
(
I
)
+
α
R
j
(
I
)
)
A
=
e
i
A
+
α
e
j
A
=
=
R
i
(
A
)
+
α
R
j
(
A
)
=
R
i
(
p
(
A
)
)
⟹
p
(
A
)
=
p
(
I
)
A
Let
p
be row switching
i
≠
j
∈
[
1
,
m
]
:
∀
X
∈
F
m
×
n
:
R
i
(
p
(
X
)
)
=
R
j
(
X
)
,
R
j
(
p
(
X
)
)
=
R
i
(
X
)
Let
i
≠
k
≠
j
R
k
(
p
(
I
)
A
)
=
R
k
(
p
(
I
)
)
A
=
e
k
A
=
R
k
(
A
)
=
R
k
(
p
(
A
)
)
R
i
(
p
(
I
)
A
)
=
R
i
(
p
(
I
)
)
A
=
R
j
(
I
)
A
=
e
j
A
=
R
j
(
A
)
=
R
i
(
p
(
A
)
)
R
j
(
p
(
I
)
A
)
=
R
j
(
p
(
I
)
)
A
=
R
i
(
I
)
A
=
e
i
A
=
R
i
(
A
)
=
R
j
(
p
(
A
)
)
⟹
p
(
A
)
=
p
(
I
)
A
(3) Linear dependence properties
Let
V
be a vector space over
F
Let
S
⊆
V
1.
S
is a linear dependence
2.
∃
v
∈
S
:
v
∈
s
p
(
S
∖
{
v
}
)
3.
∃
v
∈
S
:
s
p
(
S
)
=
s
p
(
S
∖
{
v
}
)
1
⟺
2
⟺
3
Proof:
Let
S
=
{
v
1
,
v
2
,
…
,
v
n
}
Let
1
⟹
∃
α
i
≠
0
:
∑
i
=
1
n
α
i
v
i
=
0
Let
α
1
≠
0
(WLOG)
⟹
v
1
=
∑
i
=
2
n
(
−
α
i
α
i
−
1
)
v
i
∀
i
∈
[
2
,
n
]
:
v
i
≠
v
1
⟹
v
1
∈
s
p
(
S
∖
{
v
1
}
)
⟹
1
⟹
2
Let
2
Let
v
1
∈
s
p
(
S
∖
{
v
1
}
)
(WLOG)
S
∖
{
v
1
}
⊆
S
⟹
s
p
(
S
∖
{
v
1
}
)
⊆
s
p
(
S
)
Let
u
∈
s
p
(
S
)
u
=
∑
i
=
1
n
α
i
v
i
=
α
1
v
1
+
∑
i
=
2
n
α
i
v
i
v
1
∈
s
p
(
S
∖
{
v
1
}
)
⟹
v
1
=
∑
j
=
2
n
β
j
v
j
⟹
u
=
α
1
∑
j
=
2
n
β
j
v
j
+
∑
i
=
2
n
α
i
v
i
=
∑
i
=
2
n
(
α
1
β
i
+
α
i
)
v
i
⟹
u
∈
s
p
(
S
∖
{
v
1
}
)
⟹
s
p
(
S
)
⊆
s
p
(
S
∖
{
v
1
}
)
⟹
s
p
(
S
)
=
s
p
(
S
∖
{
v
1
}
)
⟹
2
⟹
3
Let
3
Let
s
p
(
S
∖
{
v
1
}
)
=
s
p
(
S
)
(WLOG)
v
1
∈
S
⟹
v
1
∈
s
p
(
S
)
⟹
v
1
∈
s
p
(
S
∖
{
v
1
}
)
⟹
v
1
=
∑
i
=
2
n
α
i
v
i
⟹
v
1
−
∑
i
=
2
n
α
i
v
i
=
0
⟹
{
1
,
−
α
2
,
−
α
3
,
…
,
−
α
n
}
is a non-trivial linear combination of
S
⟹
S
is a linear dependence
⟹
3
⟹
1
⟹
[
1
⟹
2
⟹
3
⟹
1
]
⟹
1
⟺
2
⟺
3
(4) Linear independence properties
Let
V
be a finitely generated vector space
Let
B
⊆
V
1.
s
p
(
B
)
=
V
2.
B
is a linear independence
3.
|
B
|
=
d
i
m
(
V
)
If any two properties are true, then the third one is also true
Proof:
1
and
2
⟹
3
by definition of basis
Let
2
and
3
Let
s
p
(
B
)
≠
V
⟹
∃
v
∈
V
:
v
∉
s
p
(
B
)
⟹
B
∪
{
v
}
is a linear independence
Let
C
be a basis of
V
d
i
m
(
V
)
=
|
C
|
<
|
B
∪
{
v
}
|
But
C
is a maximal linear independence of
V
−
Contradiction!
⟹
s
p
(
B
)
=
V
⟹
2
and
3
⟹
1
Let
1
and
3
Let
C
be a basis of
V
Let
B
be a linear dependence
⟹
∃
v
∈
B
:
s
p
(
B
∖
{
v
}
)
=
s
p
(
B
)
=
V
⟹
d
i
m
(
V
)
=
|
C
|
≤
|
B
∖
{
v
}
|
=
d
i
m
(
V
)
−
1
−
Contradiction!
⟹
B
is a linear independence
⟹
1
and
3
⟹
2
(5) Dimension theorem
Let
V
be a finitely generated vector space
Let
U
,
W
⊆
V
be vector subspaces of
V
Then
d
i
m
(
U
+
W
)
=
d
i
m
(
U
)
+
d
i
m
(
W
)
−
d
i
m
(
U
∩
W
)
Proof:
Let
B
be a basis of
U
∩
W
,
B
=
{
v
1
,
v
2
,
…
,
v
n
}
U
∩
W
⊆
U
,
W
⟹
B
⊆
B
U
=
B
∪
{
u
1
,
u
2
,
…
,
u
k
}
⟹
B
⊆
B
W
=
B
∪
{
w
1
,
w
2
,
…
,
w
t
}
d
i
m
(
U
∩
W
)
=
n
d
i
m
(
U
)
=
n
+
k
,
d
i
m
(
W
)
=
n
+
t
Let
B
^
=
B
U
∪
B
W
U
+
W
=
s
p
(
B
U
)
+
s
p
(
B
W
)
=
s
p
(
B
U
∪
B
W
)
=
s
p
(
B
^
)
Let
∑
i
=
1
n
α
i
v
i
+
∑
j
=
1
k
β
j
u
j
+
∑
r
=
1
t
γ
r
w
r
=
0
⟹
∑
i
=
1
n
α
i
v
i
+
∑
j
=
1
k
β
j
u
j
⏟
∈
s
p
(
B
U
)
=
U
=
−
∑
r
=
1
t
γ
r
w
r
⏟
∈
s
p
(
B
W
)
=
W
⟹
−
∑
r
=
1
t
γ
r
w
r
∈
U
∩
W
⟹
−
∑
r
=
1
t
γ
r
w
r
=
∑
i
=
1
n
δ
i
v
i
⟹
∑
i
=
1
n
δ
i
v
i
+
∑
r
=
1
t
γ
r
w
r
⏟
∈
s
p
(
B
W
)
=
0
⟹
δ
1
=
δ
2
=
⋯
=
δ
n
=
γ
1
=
γ
2
=
⋯
=
γ
t
=
0
⟹
∑
r
=
1
t
γ
r
w
r
=
0
⟹
∑
i
=
1
n
α
i
v
i
+
∑
j
=
1
k
β
j
u
j
⏟
∈
s
p
(
B
U
)
=
0
⟹
α
1
=
α
2
=
⋯
=
α
n
=
β
1
=
β
2
=
⋯
=
β
k
=
0
⟹
B
^
is a linear independence
⟹
B
^
is a basis of
U
+
W
⟹
d
i
m
(
U
+
W
)
=
|
B
^
|
=
|
B
U
∪
B
W
|
=
|
B
U
|
+
|
B
W
|
−
|
B
U
∩
B
W
|
⟹
d
i
m
(
U
+
W
)
=
d
i
m
(
U
)
+
d
i
m
(
W
)
−
d
i
m
(
U
∩
W
)
(-) Defining theorem for linear transformation
Let
V
,
U
be finitely generated vector spaces over
F
Let
B
=
{
v
1
,
v
2
,
…
,
v
n
}
be a basis of
V
Let
u
1
,
u
2
,
…
,
u
n
∈
U
Then
∃
!
linear transformation
T
:
V
→
U
:
∀
i
∈
[
1
,
n
]
:
T
(
v
i
)
=
u
i
Proof:
B
is a basis of
V
⟹
∀
v
∈
V
:
∃
{
α
i
}
i
∈
[
1
,
n
]
⊆
F
:
v
=
∑
i
=
1
n
α
i
v
i
Let
∀
v
∈
V
:
T
(
v
)
=
∑
i
=
1
n
α
i
u
i
,
where
α
i
are the linear combination of
B
for
v
⟹
∀
i
∈
[
1
,
n
]
:
T
(
v
i
)
=
T
(
1
v
i
)
=
1
u
i
=
u
i
Let
u
,
v
∈
V
,
α
∈
F
u
=
∑
i
=
1
n
β
i
v
i
⟹
T
(
u
)
=
∑
i
=
1
n
β
i
u
i
v
=
∑
i
=
1
n
γ
i
v
i
⟹
T
(
v
)
=
∑
i
=
1
n
γ
i
u
i
⟹
u
+
α
v
=
∑
i
=
1
n
β
i
v
i
+
α
∑
i
=
1
n
γ
i
v
i
=
∑
i
=
1
n
(
β
i
+
α
γ
i
)
v
i
⟹
T
(
u
+
α
v
)
=
∑
i
=
1
n
(
β
i
+
α
γ
i
)
u
i
=
∑
i
=
1
n
β
i
u
i
+
α
∑
i
=
1
n
γ
i
u
i
=
T
(
u
)
+
α
T
(
v
)
⟹
T
is a linear transformation
⟹
Such linear transformation exists
Let
T
2
be another linear transformation such that
∀
i
∈
[
1
,
n
]
:
T
2
(
v
i
)
=
u
i
T
(
u
)
=
T
(
∑
i
=
1
n
β
i
v
i
)
=
∑
i
=
1
n
β
i
u
i
T
2
(
u
)
=
T
2
(
∑
i
=
1
n
β
i
v
i
)
=
∑
i
=
1
n
β
i
T
2
(
v
i
)
=
∑
i
=
1
n
β
i
u
i
=
T
(
u
)
⟹
T
2
=
T
⟹
Such linear transformation is unique
(6) Rank-nullity theorem for linear transformation
Let
V
,
U
be finitely generated vector spaces
Let
T
:
V
→
U
be a linear transformation
Then
d
i
m
(
V
)
=
d
i
m
(
k
e
r
(
T
)
)
+
d
i
m
(
I
m
(
T
)
)
Proof:
Let
d
i
m
(
V
)
=
n
k
e
r
(
T
)
=
{
v
∈
V
|
T
(
v
)
=
0
}
I
m
(
T
)
=
{
u
∈
U
:
∃
v
∈
V
:
T
(
v
)
=
u
}
k
e
r
(
T
)
⊆
V
⟹
∃
B
k
=
{
u
1
,
u
2
,
…
,
u
k
}
a basis of
k
e
r
(
T
)
⟹
d
i
m
(
k
e
r
(
T
)
)
=
k
Let
S
=
{
v
1
,
v
2
,
…
,
v
n
−
k
}
such that
B
=
B
k
∪
S
is a basis of
V
T
(
v
)
=
T
(
∑
i
=
1
k
α
i
u
i
+
∑
i
=
1
n
−
k
β
i
v
i
)
=
∑
i
=
1
k
α
i
T
(
u
i
)
+
∑
i
=
1
n
−
k
β
i
T
(
v
i
)
=
∑
i
=
1
n
−
k
β
i
T
(
v
i
)
∈
s
p
(
T
[
S
]
)
⟹
I
m
(
T
)
=
s
p
(
{
T
(
u
1
)
⏟
0
,
T
(
u
2
)
⏟
0
,
…
,
T
(
u
n
)
⏟
0
,
T
(
v
1
)
,
T
(
v
2
)
,
…
,
T
(
v
n
−
k
)
}
)
=
=
s
p
(
{
T
(
v
1
)
,
T
(
v
2
)
,
…
,
T
(
v
n
−
k
)
}
)
Let
∑
i
=
1
n
−
k
α
i
T
(
v
i
)
=
0
⟹
T
(
∑
i
=
1
n
−
k
α
i
v
i
)
=
0
⟹
∑
i
=
1
n
−
k
α
i
v
i
∈
k
e
r
(
T
)
⟹
∑
i
=
1
n
−
k
α
i
v
i
=
∑
i
=
1
k
β
i
u
i
⟹
∑
i
=
1
n
−
k
α
i
v
i
−
∑
i
=
1
k
β
i
u
i
=
0
B
is a linear indepedendence
⟹
α
1
=
α
2
=
⋯
=
α
n
−
k
=
−
β
1
=
−
β
2
=
⋯
=
−
β
k
=
0
⟹
{
T
(
v
1
)
,
T
(
v
2
)
,
…
,
T
(
v
n
−
k
)
}
is a linear independence
⟹
{
T
(
v
1
)
,
T
(
v
2
)
,
…
,
T
(
v
n
−
k
)
}
is a basis of
I
m
(
T
)
⟹
d
i
m
(
I
m
(
T
)
)
=
n
−
k
⟹
n
=
d
i
m
(
k
e
r
(
T
)
)
+
d
i
m
(
I
m
(
T
)
)
=
d
i
m
(
V
)
(7) Invertibility of linear transformation
Let
T
:
V
→
U
be a linear transformation
Then
T
is invertible
⟺
T
is bijective
Proof:
Let
T
be invertible
⟹
∃
linear transformation
T
−
1
:
T
T
−
1
=
T
−
1
T
=
I
T
T
−
1
=
I
⟹
T
T
−
1
is surjective
⟹
T
is surjective
T
−
1
T
=
I
⟹
T
−
1
T
is injective
⟹
T
is injective
⟹
T
is bijective
Let
T
be bijective
T
is a function
⟹
∃
inverse function
T
−
1
Let
u
1
,
u
2
∈
U
,
α
∈
F
T
−
1
(
u
1
+
α
u
2
)
=
T
−
1
(
T
T
−
1
(
u
1
+
α
u
2
)
)
=
T
−
1
(
T
T
−
1
(
u
1
)
+
α
T
T
−
1
(
u
2
)
)
=
=
T
−
1
(
T
(
T
−
1
(
u
1
)
+
α
T
−
1
(
u
2
)
)
)
=
T
−
1
T
(
T
−
1
(
u
1
)
+
α
T
−
1
(
u
2
)
)
=
T
−
1
(
u
1
)
+
α
T
−
1
(
u
2
)
⟹
T
−
1
is a linear transformation
(8) Isomorphic vector spaces
Let
V
,
U
be finitely generated vector spaces over
F
V
and
U
are isomorphic
⟺
d
i
m
(
V
)
=
d
i
m
(
U
)
Proof:
Let
d
i
m
(
V
)
=
d
i
m
(
U
)
Let
B
=
{
v
1
,
v
2
,
…
,
v
n
}
be a basis of
V
Let
C
=
{
u
1
,
u
2
,
…
,
u
n
}
be a basis of
W
Let
T
:
V
→
U
,
∀
i
∈
[
1
,
n
]
:
T
(
v
i
)
=
u
i
{
T
(
v
1
)
,
T
(
v
2
)
,
…
,
T
(
v
n
)
}
=
C
⊆
I
m
(
T
)
d
i
m
(
s
p
(
C
)
)
=
d
i
m
(
U
)
⟹
d
i
m
(
I
m
(
T
)
)
≥
d
i
m
(
U
)
⟹
d
i
m
(
I
m
(
T
)
)
=
d
i
m
(
U
)
⟹
I
m
(
T
)
=
U
⟹
T
is surjective
Let
v
≠
v
^
∈
V
∃
{
α
i
}
i
∈
[
1
,
n
]
⊆
F
:
v
=
∑
i
=
1
n
α
i
v
i
∃
{
β
i
}
i
∈
[
1
,
n
]
⊆
F
:
v
^
=
∑
i
=
1
n
β
i
v
^
i
v
≠
v
^
⟹
∃
j
∈
[
1
,
n
]
:
α
j
≠
β
j
T
(
v
)
=
T
(
∑
i
=
1
n
α
i
v
i
)
=
∑
m
=
1
n
α
i
u
i
T
(
v
^
)
=
T
(
∑
i
=
1
n
β
i
v
i
)
=
∑
m
=
1
n
β
i
u
i
C
is a linear independence
∧
a
j
≠
β
j
⟹
∑
m
=
1
n
α
i
u
i
≠
∑
m
=
1
n
β
i
u
i
⟹
T
(
v
)
≠
T
(
v
^
)
⟹
T
is injective
⟹
T
is bijective
⟹
T
is an isomorphism
⟹
V
≅
U
Let
V
≅
U
⟹
∃
T
:
V
→
U
invertible linear transformation
T
is invertible
⟹
{
T
is surjective
⟹
I
m
(
T
)
=
U
T
is injective
⟹
k
e
r
(
T
)
=
{
0
}
d
i
m
(
V
)
=
d
i
m
(
k
e
r
(
T
)
)
+
d
i
m
(
I
m
(
T
)
)
=
0
+
d
i
m
(
U
)
⟹
d
i
m
(
V
)
=
d
i
m
(
U
)
(9) Representation matrix for linear transformation
Let
V
,
U
be finitely generated vector spaces over
F
Let
T
:
V
→
U
be a linear transformation
Let
B
,
C
be bases of
V
,
U
Then exists matrix
A
:
∀
v
∈
V
:
A
[
v
]
B
=
[
T
(
v
)
]
C
A
is denoted as
[
T
]
C
B
Proof:
Let
d
i
m
(
V
)
=
n
Let
d
i
m
(
U
)
=
m
B
=
{
v
1
,
v
2
,
…
,
v
n
}
C
=
{
u
1
,
u
2
,
…
,
u
m
}
∀
j
∈
[
1
,
n
]
:
∃
{
α
i
j
}
i
∈
[
1
,
m
]
:
T
(
v
j
)
=
u
=
∑
i
=
1
m
α
i
j
u
i
Let
A
∈
F
m
×
n
:
A
i
j
=
α
i
j
Let
T
A
:
R
n
→
R
m
,
T
(
v
)
=
A
v
∀
j
∈
[
1
,
n
]
:
T
A
(
[
v
j
]
B
)
=
A
[
v
j
]
B
=
A
e
j
=
C
j
(
A
)
⏟
∈
F
m
=
∑
i
=
1
m
α
i
j
e
i
=
∑
i
=
1
m
α
i
j
[
u
i
]
C
=
=
[
∑
i
=
1
m
α
i
j
u
i
]
C
=
[
T
(
v
j
)
]
C
Let
v
∈
V
∃
{
β
k
}
k
∈
[
1
,
n
]
⊆
F
:
v
=
∑
k
=
1
n
β
k
v
k
⟹
[
T
(
v
)
]
C
=
[
T
(
∑
k
=
1
n
β
k
v
k
)
]
C
=
[
∑
k
=
1
n
β
k
T
(
v
k
)
]
C
=
∑
k
=
1
n
β
k
[
T
(
v
k
)
]
C
=
∑
k
=
1
n
β
k
A
[
v
k
]
B
=
=
∑
k
=
1
n
A
β
k
[
v
k
]
B
=
A
∑
k
=
1
n
[
β
k
v
k
]
B
=
A
[
∑
k
=
1
n
β
k
v
k
]
B
=
A
[
v
]
B
⟹
∀
v
∈
V
:
A
[
v
]
B
=
[
T
(
v
)
]
C
(10) Kernel and Image in relation to representation matrix
Let
V
,
U
be finitely generated vector spaces
Let
T
:
V
→
U
be a linear transformation
Let
[
T
]
D
B
be a representation matrix of
T
Prove:
[
k
e
r
(
T
)
]
B
=
N
(
[
T
]
D
B
)
[
I
m
(
T
)
]
D
=
C
(
[
T
]
D
B
)
Proof:
[
v
]
B
∈
[
k
e
r
(
T
)
]
B
⟺
v
∈
k
e
r
(
T
)
⟺
T
(
v
)
=
0
⟺
[
T
]
D
B
[
v
]
B
=
[
T
(
v
)
]
D
=
[
0
]
D
=
0
⟺
[
v
]
B
∈
N
(
[
T
]
D
B
)
⟹
[
k
e
r
(
T
)
]
B
=
N
(
[
T
]
D
B
)
∀
v
∈
V
:
[
T
]
D
B
[
v
]
B
∈
C
(
[
T
]
D
B
)
[
u
]
D
∈
[
I
m
(
T
)
]
D
⟺
u
∈
I
m
(
T
)
⟺
∃
v
∈
V
:
T
(
v
)
=
u
⟺
[
T
]
D
B
[
v
]
B
=
[
u
]
D
⟺
[
u
]
D
∈
C
(
[
T
]
D
B
)
⟹
[
I
m
(
T
)
]
D
=
C
(
[
T
]
D
B
)