Theorems and proofs

(1) Short criterion for a vector subspace

Let V be a vector space over FLet WV1.0VW2.αF,u,vW:u+αvW1 and 2W is a vector subspace of VNote: 2 can be separated into two properties:2.1u,vW:u+vW2.2αF,vW:αvWProof:Let W be a vector subspace of VW is a vector space0WW0W is neutral to addition in W:0W=0W+0W0W+(0W)0V=0W+(0W+(0W)0V)0V=0W+0V0V is neutral to addition in V0W=0V0VWW is a vector spaceW is closed for addition and multiplication by scalarαF,u,vW:u+αvWLet 1 and 2Let us prove that W is a vector space over F by checking 7 vector space axioms:a.Closure on addition and multiplication by scalarb.Commutativityc.Associativityd.Distributivitye.Neutral element for additionf.Inverse on additiong.Neutral element for multiplication by scalar1 and 2W is closed on addition and multiplication by scalaraαF,v1,v2W:v1,v2V{v1+v2=v2+v1αv1=v1αbα,βF,v1,v2,v3W:v1,v2,v3V{(v1+v2)+v3=v1+(v2+v3)α(βv)=(αβ)vcα,βF,v1,v2W:v1,v2V{α(v1+v2)=αv1+αv2(α+β)v=αv+βvd1vW:0v+v=vWevW:vV1Fv=vWgvW:vVvV:v+(v)=0V1Fv+(1F)v=(1F+(1F))v=0Vv=1FvvWfW is a vector spaceW is a vector subspace of V

(2) Elementary row operations

Let AFm×nLet p be an elementary row operationThen p(A)=p(I)AProof:Let p be scalar row multiplicationαF,i[1,m]:XFm×n:Ri(p(X))=αRi(X)Let kiRk(p(I)A)=Rk(p(I))A=Rk(I)A=ekA=Rk(A)=Rk(p(A))Ri(p(I)A)=Ri(p(I))A=αRi(I)A=αeiA=αRi(A)=Ri(p(A))p(A)=p(I)ALet p be row additionαF,ij[1,m]:XFm×n:Ri(p(X))=Ri(X)+αRj(X)Let kiRk(p(I)A)=Rk(p(I))A=Rk(I)A=ekA=Rk(A)=Rk(p(A))Ri(p(I)A)=Ri(p(I))A=(Ri(I)+αRj(I))A=eiA+αejA==Ri(A)+αRj(A)=Ri(p(A))p(A)=p(I)ALet p be row switchingij[1,m]:XFm×n:Ri(p(X))=Rj(X),Rj(p(X))=Ri(X)Let ikjRk(p(I)A)=Rk(p(I))A=ekA=Rk(A)=Rk(p(A))Ri(p(I)A)=Ri(p(I))A=Rj(I)A=ejA=Rj(A)=Ri(p(A))Rj(p(I)A)=Rj(p(I))A=Ri(I)A=eiA=Ri(A)=Rj(p(A))p(A)=p(I)A

(3) Linear dependence properties

Let V be a vector space over FLet SV1.S is a linear dependence2.vS:vsp(S{v})3.vS:sp(S)=sp(S{v})123Proof:Let S={v1,v2,,vn}Let 1αi0:i=1nαivi=0Let α10 (WLOG)v1=i=2n(αiαi1)vii[2,n]:viv1v1sp(S{v1})12Let 2Let v1sp(S{v1}) (WLOG)S{v1}Ssp(S{v1})sp(S)Let usp(S)u=i=1nαivi=α1v1+i=2nαiviv1sp(S{v1})v1=j=2nβjvju=α1j=2nβjvj+i=2nαivi=i=2n(α1βi+αi)viusp(S{v1})sp(S)sp(S{v1})sp(S)=sp(S{v1})23Let 3Let sp(S{v1})=sp(S) (WLOG)v1Sv1sp(S)v1sp(S{v1})v1=i=2nαiviv1i=2nαivi=0{1,α2,α3,,αn} is a non-trivial linear combination of SS is a linear dependence31[1231]123

(4) Linear independence properties

Let V be a finitely generated vector spaceLet BV1.sp(B)=V2.B is a linear independence3.|B|=dim(V)If any two properties are true, then the third one is also trueProof:1 and 23 by definition of basisLet 2 and 3Let sp(B)VvV:vsp(B)B{v} is a linear independenceLet C be a basis of Vdim(V)=|C|<|B{v}|But C is a maximal linear independence of VContradiction!sp(B)=V2 and 31Let 1 and 3Let C be a basis of VLet B be a linear dependencevB:sp(B{v})=sp(B)=Vdim(V)=|C||B{v}|=dim(V)1Contradiction!B is a linear independence1 and 32

(5) Dimension theorem

Let V be a finitely generated vector spaceLet U,WV be vector subspaces of VThen dim(U+W)=dim(U)+dim(W)dim(UW)Proof:Let B be a basis of UW,B={v1,v2,,vn}UWU,WBBU=B{u1,u2,,uk}BBW=B{w1,w2,,wt}dim(UW)=ndim(U)=n+k,dim(W)=n+tLet B^=BUBWU+W=sp(BU)+sp(BW)=sp(BUBW)=sp(B^)Let i=1nαivi+j=1kβjuj+r=1tγrwr=0i=1nαivi+j=1kβjujsp(BU)=U=r=1tγrwrsp(BW)=Wr=1tγrwrUWr=1tγrwr=i=1nδivii=1nδivi+r=1tγrwrsp(BW)=0δ1=δ2==δn=γ1=γ2==γt=0r=1tγrwr=0i=1nαivi+j=1kβjujsp(BU)=0α1=α2==αn=β1=β2==βk=0B^ is a linear independenceB^ is a basis of U+Wdim(U+W)=|B^|=|BUBW|=|BU|+|BW||BUBW|dim(U+W)=dim(U)+dim(W)dim(UW)

(-) Defining theorem for linear transformation

Let V,U be finitely generated vector spaces over FLet B={v1,v2,,vn} be a basis of VLet u1,u2,,unUThen ! linear transformation T:VU:i[1,n]:T(vi)=uiProof:B is a basis of VvV:{αi}i[1,n]F:v=i=1nαiviLet vV:T(v)=i=1nαiui, where αi are the linear combination of B for vi[1,n]:T(vi)=T(1vi)=1ui=uiLet u,vV,αFu=i=1nβiviT(u)=i=1nβiuiv=i=1nγiviT(v)=i=1nγiuiu+αv=i=1nβivi+αi=1nγivi=i=1n(βi+αγi)viT(u+αv)=i=1n(βi+αγi)ui=i=1nβiui+αi=1nγiui=T(u)+αT(v)T is a linear transformationSuch linear transformation existsLet T2 be another linear transformation such that i[1,n]:T2(vi)=uiT(u)=T(i=1nβivi)=i=1nβiuiT2(u)=T2(i=1nβivi)=i=1nβiT2(vi)=i=1nβiui=T(u)T2=TSuch linear transformation is unique

(6) Rank-nullity theorem for linear transformation

Let V,U be finitely generated vector spacesLet T:VU be a linear transformationThen dim(V)=dim(ker(T))+dim(Im(T))Proof:Let dim(V)=nker(T)={vV|T(v)=0}Im(T)={uU:vV:T(v)=u}ker(T)VBk={u1,u2,,uk} a basis of ker(T)dim(ker(T))=kLet S={v1,v2,,vnk} such that B=BkS is a basis of VT(v)=T(i=1kαiui+i=1nkβivi)=i=1kαiT(ui)+i=1nkβiT(vi)=i=1nkβiT(vi)sp(T[S])Im(T)=sp({T(u1)0,T(u2)0,,T(un)0,T(v1),T(v2),,T(vnk)})==sp({T(v1),T(v2),,T(vnk)})Let i=1nkαiT(vi)=0T(i=1nkαivi)=0i=1nkαiviker(T)i=1nkαivi=i=1kβiuii=1nkαivii=1kβiui=0B is a linear indepedendenceα1=α2==αnk=β1=β2==βk=0{T(v1),T(v2),,T(vnk)} is a linear independence{T(v1),T(v2),,T(vnk)} is a basis of Im(T)dim(Im(T))=nkn=dim(ker(T))+dim(Im(T))=dim(V)

(7) Invertibility of linear transformation

Let T:VU be a linear transformationThen T is invertibleT is bijectiveProof:Let T be invertible linear transformation T1:TT1=T1T=ITT1=ITT1 is surjectiveT is surjectiveT1T=IT1T is injectiveT is injectiveT is bijectiveLet T be bijectiveT is a function inverse function T1Let u1,u2U,αFT1(u1+αu2)=T1(TT1(u1+αu2))=T1(TT1(u1)+αTT1(u2))==T1(T(T1(u1)+αT1(u2)))=T1T(T1(u1)+αT1(u2))=T1(u1)+αT1(u2)T1 is a linear transformation

(8) Isomorphic vector spaces

Let V,U be finitely generated vector spaces over FV and U are isomorphicdim(V)=dim(U)Proof:Let dim(V)=dim(U)Let B={v1,v2,,vn} be a basis of VLet C={u1,u2,,un} be a basis of WLet T:VU,i[1,n]:T(vi)=ui{T(v1),T(v2),,T(vn)}=CIm(T)dim(sp(C))=dim(U)dim(Im(T))dim(U)dim(Im(T))=dim(U)Im(T)=UT is surjectiveLet vv^V{αi}i[1,n]F:v=i=1nαivi{βi}i[1,n]F:v^=i=1nβiv^ivv^j[1,n]:αjβjT(v)=T(i=1nαivi)=m=1nαiuiT(v^)=T(i=1nβivi)=m=1nβiuiC is a linear independenceajβjm=1nαiuim=1nβiuiT(v)T(v^)T is injectiveT is bijectiveT is an isomorphismVULet VUT:VU invertible linear transformationT is invertible{T is surjectiveIm(T)=UT is injectiveker(T)={0}dim(V)=dim(ker(T))+dim(Im(T))=0+dim(U)dim(V)=dim(U)

(9) Representation matrix for linear transformation

Let V,U be finitely generated vector spaces over FLet T:VU be a linear transformationLet B,C be bases of V,UThen exists matrix A:vV:A[v]B=[T(v)]CA is denoted as [T]CBProof:Let dim(V)=nLet dim(U)=mB={v1,v2,,vn}C={u1,u2,,um}j[1,n]:{αij}i[1,m]:T(vj)=u=i=1mαijuiLet AFm×n:Aij=αijLet TA:RnRm,T(v)=Avj[1,n]:TA([vj]B)=A[vj]B=Aej=Cj(A)Fm=i=1mαijei=i=1mαij[ui]C==[i=1mαijui]C=[T(vj)]CLet vV{βk}k[1,n]F:v=k=1nβkvk[T(v)]C=[T(k=1nβkvk)]C=[k=1nβkT(vk)]C=k=1nβk[T(vk)]C=k=1nβkA[vk]B==k=1nAβk[vk]B=Ak=1n[βkvk]B=A[k=1nβkvk]B=A[v]BvV:A[v]B=[T(v)]C

(10) Kernel and Image in relation to representation matrix

Let V,U be finitely generated vector spacesLet T:VU be a linear transformationLet [T]DB be a representation matrix of TProve: [ker(T)]B=N([T]DB)[Im(T)]D=C([T]DB)Proof:[v]B[ker(T)]Bvker(T)T(v)=0[T]DB[v]B=[T(v)]D=[0]D=0[v]BN([T]DB)[ker(T)]B=N([T]DB)vV:[T]DB[v]BC([T]DB)[u]D[Im(T)]DuIm(T)vV:T(v)=u[T]DB[v]B=[u]D[u]DC([T]DB)[Im(T)]D=C([T]DB)