Linear-2 1

Determinant

Determinant is a way to calculate area (volume in 3D, etc.) of a figuredefined by n vectors v1,v2,v3,,vn

Permutation #definition

Permutation σ:[n][n] is a bijective functionis a set of values {σ(1),σ(2),,σ(n)}For example:(1234535124)Which can in turn be expressed as (2,5,4)(3,1)(1,3,2)(1,2,3)=(2,3,1)

Transposition #definition

Let i,j[n](i,j) is called transposition if i<j and σ(i)>σ(j)(1,2,3){σ(1)=2σ(2)=3σ(3)=1{1<2,σ(1)<σ(2)2<3,σ(2)>σ(3)1<3,σ(1)>σ(3)

Permutation sign #definition

Let k be the number of transpositions in σPermutation sign is then calculated and denoted as sgn(σ)=(1)k

Symmetric group #definition

Set of all possible permutations of [n] is denoted asSn={{σ(1),σ(2),,σ(n)}|σ:[n][n] is bijective}S2={(1212),(1221)}={(1)(2)(1,2)S3={(123123),(123132),(123213),(123231),(123312),(123321)}=={(1)(2)(3)sgn(σ)=(1)0(1)(2,3)sgn(σ)=(1)1(1,2)(3)sgn(σ)=(1)1(1,2,3)sgn(σ)=(1)2(1,3,2)sgn(σ)=(1)2(1,3)(2)sgn(σ)=(1)3

Determinant #definition

Let | |:Fn×nFAFn×n:|A|=σSna1σ(1)a2σ(2)anσ(n)Sometimes denoted as det(A)A=(a11a12a21a22)det(A)=|A|=a11a22σ(1)=1,σ(2)=2,sgn(σ)=1a12a21σ(1)=2,σ(2)=1,sgn(σ)=1A=(123456789)det(A)=|A|==a11a22a33a11a23a32a12a21a33+a12a23a31+a13a21a32a13a22a31==454872+84+96105=0

Determinant of triangular matrix #lemma

Let AFn×n be a triangular matrix Then |A|=i=1naiiProof:Let σIk2:(x1,,xk)σCase 1. Let j[k1]:xj>xj+1xj>σ(xj)axjσ(xj)=0sgn(σ)a1σ(1)anσ(n)=0Let x1<x2<<xkxk>x1=σ(xk)axkσ(xk)=0sgn(σ)a1σ(1)anσ(n)=0|A|=i=1naiiSimilar proof for lower-triangular matrix

Row-linearity of determinant #lemma

LetAFn×nLet i[n]Let v,uFn:Ri(A)=v+αuLet Av={Rj(Av)=Rj(A)jiRj(Av)=vj=iLet Au={Rj(Av)=Rj(A)jiRj(Av)=uj=iThen |A|=|Av|+α|Au|

Determinant of a matrix with two equal rows #lemma

Let AFn×nLet ij[n]:Ri(A)=Rj(A)Then |A|=0

Determinant of a matrix with a zero row #lemma

Let i[n]:Ri(A)=0Then |A|=0Proof:σ:aiσ(i)=0σ:sgn(σ)a1σ(1)anσ(n)=0|A|=0

Determinant after elementary row-operations #lemma

Let AFn×nLet B=p(A)Then {p:αRi|B|=α|A|p:RiRj|B|=|A|p:Ri+αRj|B|=|A|Proof:Let A=(v1v2vn)Let p:αRiB=(v1αvivn)Ri(B)=0+αvi|B|=|B0|+α|Bvi|=0+α|A|=α|A|Let p:RiRjLet i>j(WLOG)Let X=(v1vi+vjvi+vjvn)0=|X|=|v1vivi+vjvn|+|v1vjvi+vjvn|==|v1vivivn|+|v1vivjvn|+|v1vjvivn|+|v1vjvjvn|=0+|A|+|B|+0|A|+|B|=0|B|=|A|Let p:Ri+αRjB=(v1vi+αvjvn)|B|=|A|+α|v1vjvjvn|=|A|

Properties of elementary row-operations determinant #lemma

Let AFn×np:αRi|p(I)|=α|I|=αp:RiRj|p(I)|=|I|=1p:Ri+αRj|p(I)|=|I|=1|p(I)A|=|p(I)||A|(Simple proof by induction) |(i=1kpi(I))A|=(i=1k|pi(I)|)|A|A,BFn×n:A=(i=1kpi)Bα0F:|A|=α|B|

Invertibility of matrix and determinant #theorem

Let AFn×nThen |A|0A is invertibleProof:Let A be non-invertiblei[n]:Ri(CF(A))=0|CF(A)|=0=α|A|α0|A|=0Let |A|=0|A|=α|CF(A)|=0α0|CF(A)|=0|I|0CF(A)IA is not invertible

Determinant of two matrix product #lemma

Let A,BFn×nThen |AB|=|A||B|Proof:Let A be non-invertible|A|=0|A||B|=0rank(A)<nrank(AB)rank(A)<nAB is non-invertible|AB|=0=|A||B|Let A be invertibleA=(i=1kpi(I))CF(A)=i=1kpi(I)|A|=|i=1kpi(I)|=i=1k|pi(I)|AB=(i=1kpi(I))B|AB|=|(i=1kpi(I))B|=(i=1k|pi(I)|)|B|=|A||B|