Linear-2 2

Commutativity of determinant #lemma

A,BFn×n|AB|=|BA|Proof:|AB|=|A||B|=|B||A|=|BA|

Determinant of n matrix product #theorem

{Ai}iIFn×n|iIAi|=iI|Ai|Proof:By induction, starting from the identical lemma for two matrices

Determinant of transpose #lemma

AFn×n|A|=|AT|Proof:Let P:αRiP(I) is diagonalP(I)=P(I)T|P(I)|=|P(I)T|Let P:RiRjP(I)=P(I)T|P(I)|=|P(I)T|Let P:Ri+αRjP(I) is triangularP(I)T is triangularDiagonals of P(I) and P(I)T are the same|P(I)|=|P(I)T|Let A be non-invertiblerank(AT)=rank(A)<nAT is non-invertible|AT|=0=|A|Let A be invertibleA=i=1kPi(I)|A|=|i=1kPi(I)|=i=1k|Pi(I)|AT=(i=1kPi(I))T=i=1kPk+1i(I)T|AT|=|i=1kPk+1i(I)T|=i=1k|Pk+1i(I)T|==i=1k|Pk+1i(I)|=i=1k|Pi(I)||AT|=i=1k|Pi(I)|=|A|

Corollary

Elementary column operations affect determinant in the same way row operations do

Determinant of an inverse #lemma

Let AFn×nLet A1|A|0|AA1|=|A||A1|=|I|=1|A1|=1|A|

Summary

A1|A|0|AB|=|A||B||A|=|AT||αA|=αn|A||A1|=|A|1

Matrix minor #definition

Let AFn×nLet i,j[1,n]Minor Mij(A) is a matrix,obtained by removing row i and column j from matrix AA=(123456789)M13(A)=(4578)

Using minors to calculate determinant #lemma

Let AFn×ni[1,n]:|A|=j=1n(1)i+jaij|Mij(A)|j[1,n]:|A|=i=1n(1)i+jaij|Mij(A)|

Example

A=(123456789)|A|=1|5689|2|4679|+3|4578|=3+129=0|A|=2|4679|+5|1379|8|1346|=1260+48=0

Determinant of a linear operator (transformation) #lemma

Let V be a vector space over FLet T:VV be a linear transformationLet B be a basis of V|T|:=|[T]BB|B,C basis of V:|[T]BB|=|[T]CC|Proof:[T]BB=[I]BC[T]CC[I]CB|[T]BB|=|[I]BC[T]CC[I]CB|=|[I]BC||[T]CC||[I]CB|==|[T]CC||[I]BC[I]CB|=|[T]CC||[I]BB|=|[T]CC|

Eigenvalues and eigenvectors #definition

Let AFn×nλF is called an Eigenvalue of A ifv0Fn:Av=λvv is then called an Eigenvector of A in respect to Eigenvalue λ

Example

(2304)(32)=(128)=4(32)λ=4,v=(32)

Determinant in relation to eigenvalue #lemma

Let AFn×nλ is an Eigenvalue of A|λIA|=0Proof:λ is an Eigenvalue of Av0Fn:Av=λvv0Fn:λvAv=0v0Fn:(λIA)v=0N(λIA){0}(λIA)1|λIA|=0

Corollary

A10 is an Eigenvalue of Av0Fn:Av=0v=0N(A){0}A1|A|=0|A|=0|0IA|=00 is an Eigenvalue of A

Example

A=(2304)|λIA|=|λ230λ4|=(λ2)(λ4)=0[λ=2λ=4How do we find Eigenvectors in respect to these Eigenvalues?N(λIA)={v|(λIA)v=0}Eigenvectors in respect to Eigenvalue λis a set of non-zero solutions to homogeneous system of equations (λIA)v=0Let λ=2(030020)(010000)vsp{(10)}Let λ=4(2300)vsp{(32)}

Eigenspace #definition

Let AFn×nLet αF be an Eigenvalue of ASet of Eigenvectors in respect to α, and zero vector, is then called EigenspaceE={v|(λIA)v=0}=N(λIA)

Characteristic polynomial #definition

Let AFn×nLet λFPA(λ)=|λIA| is called a characteristic polynomial of A

Matrix similarity #definition

Let A,BFn×nMatrices A,B are called similar ifPFn×n:P1AP=BSimilarity is an equivalence relation:Reflexive: A=I1AISymmetric: P1AP=BB=(P1)1AP1Transitive: B=P1AP,C=P11BP1C=P11P1APP1=(PP1)1A(PP1)

Similar matrix properties #lemma

Let A,BFn×nLet AB|A|=|B|tr(A)=tr(B)rank(A)=rank(B)PA(λ)=PB(λ)

Diagonalizable matrix #definition

Let AFn×nLet D be a diagonal matrix Fn×nA is called diagonalizablePFn×n:P1AP=D