Linear-2 3

Diagonalizable matrix and eigenvectors #lemma

Let AFn×nA is diagonalizableB basis of Fn:i[1,n]:Avi=λiviProof: Let B basis of Fn:i[1,n]:Avi=λiviLet B={v1,,vn}Let {λi}i[1,n]:i[1,n]:Avi=λiviLet P=(v1||vn||)Fn×nB is a linear independencerank(P)=nP is invertibleP1AP=P1(Av1||Avn||)=P1(λ1v1||λnvn||)==(λ1P1v1||λnP1vn||)λiP1vi=λiP1Ci(P)=λiP1Pei=λieiP1AP=(λ1000λ2000λn)=D Let A be diagonalizableLet D=(α1000α2000αn)Let P=(p1||pn||)Fn×n be invertibleD=P1AP=P1(Ap1||Apn||)=(P1Ap1||P1Apn||)i[1,n]:Ci(D)=P1Apiαiei=P1ApiαiPei=Apiαipi=Apii[1,n]:Api=αipirank(P)=n{p1,,pn} is a linear independence of size n{p1,,pn} is a basis of Fn

Eigenvalues and eigenvectors of a linear transformation #definition

Let V be a finitely generated vector space over FLet T:VV be a linear transformationλF is called an Eigenvalue of T ifv0Fn:T(v)=λvv is then called an Eigenvector of T in respect to Eigenvalue λ

Eigenvalues of linear transformation and representation matrix #lemma

Let V be a finitely generated vector space over FLet B be a basis of VLet T:VV be a linear transformationThen λ is an eigenvalue of Tλ is an eigenvalue of [T]BBProof:λ is an eigenvalue of Tv0V:T(v)=λvv0V:[T]BB[v]B=[λv]B=λ[v]Bλ is an eigenvalue of [T]BB

Corollary

v is an eigenvector of T[v]B is an eigenvector of [T]BB

Diagonalizable linear operator #definition

Let V be a finitely generated vector space over FLet T:VV be a linear operatorT is then called diagonalizable iff B basis of V:[T]BB is diagonalizable

Diagonalizable linear operator and representation matrix #lemma

Let V be a finitely generated vector space over FLet T:VV be a linear operatorLet C be a basis of VThen T is diagonalizable[T]CC is diagonalizableProof: Let T be diagonalizableB:[T]BB is diagonal([I]CB)1[T]CC[I]CB=[T]BB[T]CC is diagonalizable Let [T]CC be diagonalizableLet PFn×n be invertibleB:P=[I]CBP1[T]CCP=[I]BC[T]CC[I]CB=[T]BB=DT is diagonalizable

Properties of characteristic polynomial #lemma

1.Eigenvalues of A are roots of its characteristic polynomial2.Characteristic polynomial is a monic polynomial of degree nThat is, its leading coefficient is 13.PA(λ)=λn+an1λn1++a01{an1=tr(A)a0=(1)n|A|Proof for 2.PA(λ)=|λIA|=i=1n(λaii)+p(λ)of degreen2==λna11λn1annλn1+p1(λ)of degreen2==λn+(tr(A))λn1+p1(λ)Proof for 3.a0=PA(0)=|0IA|=|A|=(1)n|A|

Characteristic polynomial of linear operator #definition

Let V be a finitely generated vector space over FLet B be a basis of VLet T:VV be a linear operatorPT(λ) is called a characteristic polynomial of TAnd is equal to PT(λ)=P[T]BB(λ)Note:Choice of basis does not mattterB,C:[T]BB[T]CCP[T]BB(λ)=P[T]CC(λ)

Algebraic multiplicity #definition

Let AFn×nLet λi be an eigenvalue of AMaximal degree k such that (λλi)kPA(λ) is then calledan algebraic multiplicity of λi and denoted gA=μA(λi)=k

Geometric multiplicity #definition

Let AFn×nLet λi be an eigenvalue of Adim(N(λiIA)) is then called a geometric multiplicity of λiAnd is denoted kλ=γA(λi)=dim(N(λiIA))