Linear-2 4

Polynomial division #theorem

Let f(x),g(x)F[x]:deg(f(x))deg(g(x))Then q(x),r(x)F[x]:{f(x)=q(x)g(x)+r(x)deg(r(x))<deg(g(x))

Divisibility of polynomial #lemma

Let f(x)F[x]Let αFThen (xα)f(x)f(α)=0Proof: Let f(α)=0deg(f(x))1=deg(xα)q(x),r(x)F[x]:{f(x)=q(x)(xα)+r(x)deg(r(x))<1r(x)=βf(α)=q(α)0+r(α)=0r(α)=0r(x)=0f(x)=q(x)(xα)(xα)f(x) Let (xα)f(x)q(x)F[x]:f(x)=q(x)(xα)f(α)=q(α)0=0

Algebraic and geometric multiplicities limits #lemma

Let AFn×nLet αF be an eigenvalue of AThen 1μA(α),γA(α)nProof:v0:(αIA)v=0N(αIA)0γA(α)=dim(N(αIA))1AFn×nN(αIA)Fndim(N(αIA))n1γA(α)n(λα)μA(α)PA(λ)deg((λα)μA(α))deg(PA(λ))=nμA(α)nPA(α)=0(λα)PA(λ)μA(α)11μA(α)n

Geometric multiplicity is at most algebraic multiplicity #theorem

Let AFn×nLet αF be an eigenvalue of AThen γA(α)μA(α)Proof:Let γA(α)=t1Let B={v1,,vt} be a basis of eigenspace in respect to αLet C=B{u1,,unt}Let P=(v1||vt||u1||unt||)P is invertibleP1AP=P1(Av1||Avt||Au1||Aunt||)==P1(αv1αvn||||)=(αP1v1||αP1vt||||||)==P1vi=P1Ci(P)P1Ci(P)=Ci(P1P)Ci(P1P)=ei(αe1||αet||||||)P1AP=(αItC0B)AP1APPA(λ)=PP1AP(λ)=|λIP1AP|=|(λα)ItC0λIB|==|(λα)It||λIB|=(λα)t|λIB|μA(α)t=γA(α)

Linear independency of eigenvectors in respect to distinct eigenvalues #lemma

Let AFn×nLet {λ1,,λt} be eigenvalues of ALet i[1,t]:Avi=λiviThen {v1,,vt} is a linear independenceProof:Base case. {vt} is a linear independenceInduction step. Let {v2,,vt} be a linear independenceLet i=1tαivi=0{i=1tαiAvi=i=1tαiλivi=0i=1tαiλ1vi=0i=2tαi(λiλ1)vi=0i[2,n]:λiλ1αi=0By induction: {v1,,vt} is a linear independence

Union of Eigenspace bases #theorem

Let AFn×nLet {αi}i[1,t]F be eigenvalues of ALet i[1,t]:Bi be a basis of eigenspace in respect to αiThen i=1tBi is a linear independenceProof:Let i[1,t]:Bi={vi1,,viki}Let {αij}i[1,t]j[1,ki]FLet i=1tj=1kiαijvij=0Case 1. Let i[1,t]:j=1kiαijvij=0i[1,t]:Bi is a linear independencej[1,ki]:αij=0i=1tBi is a linear independenceCase 2. Let i[1,t]:j=1kiαijvij0Let i[1,t]:ui=j=1kiαijviji[1,t]:uisp(Bi)[ui=0Aui=λiuii=1tui=0{u1,,ut} is a linear independencei[1,t]:ui=0Contradiction!Case 1.

Diagonalizability and geometric multiplicities #lemma

Let AFn×nThen A is diagonalizablei=1tγA(λi)=nProof: Let A be diagonalizableB={v1,,vn} basis of Fn:i[1,n]:Avi=λivit=nn=i=1n1i=1nγA(λi)ni=1nγA(λi)=n Let i=1tγA(λi)=nLet i[1,t]:Bi={vi1,,viki}Let PFn×n:Cij(P)=vijP1AP=P1(λ1v11||λ1v1k1|| λtvt1||λtvtkt||)==(λ1Ik1000λ2Ik2000λtIkt)=DA is diagonalizable

Diagonalizability criterion #theorem

Let AFn×nThen A is diagonalizable{i=1tμA(λi)=ni[1,t]:μA(λi)=γA(λi)Proof: Let A be diagonalizablei=1tγA(λi)=ni[1,t]:γA(λi)μA(λi)n=i=1tγA(λi)i=1tμA(λi)ni=1tμA(λi)=ni=1tμA(λi)i=1tγA(λi)=0i=1t(μA(λi)γA(λi)0)=0i[1,t]:μA(λi)=γA(λi) Let {i=1tμA(λi)=ni[1,t]:μA(λi)=γA(λi){i=1tμA(λi)=ni[1,t]:μA(λi)=γA(λi)}i=1tγA(λi)=nA is diagonalizable