Linear-2 5

Reminder

Let A be diagonalizableLet B={v1,,vn} a set of eigenvectors of AB is then a basis of FnP1AP=DP=[I]SB

Triangularizable matrix #definition

Let AFn×nLet TFn×n be a triangular matrixATA is triangularizable

Upper and lower triangularizable matrix #lemma

Let AFn×nLet UFn×n be an upper-triangular matrixLet LFn×n be a lower-triangular matrixAUAL

Triangularizable matrix #lemma

Let AFn×nA is triangularizable PA(λ) is factorizable into linear factorsCorollary: every matrix is triangularizable over CProof: Let UFn×n be a triangular matrixLet AULet i[1,n]:αi=UiiPA(λ)=PU(λ)=i=1n(λαi)PA(λ) is factorized into linear factors Let PA(λ) be factorized into linear factorsBase case. Let n=1,PA(λ)=λA11 and A is upper-triangular, AAInduction step.Let nn:AFn×n:PA(λ) is factorizable into linear factorsAULet AFn+1×n+1,PA(λ)=i=1n+1(λαi)A definitely has eigenvalues in FLet αF be an eigenvalue of ALet Eα=sp{v1,,vt},t1Let B={v1,,vt}{ut+1,,un+1} be a basis of Fn+1Let P=(v1||vt||ut+1||un+1||)P1AP=P1(αv1||αvt||Aut+1||Aun+1||)==(αItB0C)PP1AP(λ)=(λα)tPC(λ)PA(λ)=(λα)tPC(λ)PC(λ) is factorizable into linear factorsn+1tnCFn+1t×n+1t is triangularizableP1^CP^=U^,P^Fn+1t×n+1tLet Q=P(I00P^)Q1AQ=(I00P^)1P1AP(I00P^)=(I00P^)1(αIB0C)(I00P^)==(I00P1^)(αIBP^0CP^)=(αIBP^0U^)=UAU

Properties of triangularizable matrix #lemma

Let AFn×n be triangularizablePA(λ) is factorizable into linear factorsLet {α1,,αt} be eigenvalues of Atr(A)=i=1tαiμA(αi)|A|=i=1tαiμA(αi)

Matrix polynomial expression #definition

Let AFn×nLet P(x)Ft[x]P(A)=atAt++a1A+a0I is then called a matrix polynomial expression

Existence of polynomial with the given matrix as a root #lemma

AFn×n{I,A,A2,,An2}Fn×n is a linear dependencei=0n2αiAi=0P(A)=i=0n2αiAi=0P(x)=i=0n2αixi

Adjoint matrix #definition

Let AFn×nAdjoint matrix of A is denoted as: adjAFn×ni,j[1,n]:(adjA)ij=(1)i+j|Mji|

Adjoint of a transpose #lemma

Let AFn×nThen (adjA)T=adj(AT)Proof:(adjA)ijT=(adjA)ji=(1)i+j|Mij(A)|=(1)i+j|(Mij(A))T|==(1)i+j|Mji(AT)|=adj(AT)ij

Product of matrix and its adjoint #theorem

Let AFn×nAadjA=adjAA=det(A)IProof:Let i[1,n](AadjA)ii=k=1nAik(adjA)ki=k=1nAik(1)k+i|Mik|=det(A)Let ji[1,n]Let A^:Rk(A^)={Rk(A)kjRi(A)k=jdet(A^)=0(AadjA)ij=k=1nAik(adjA)kj=k=1nAik(1)k+j|Mjk(A)|==i=1nA^jk(1)k+j|Mjk(A^)|=det(A^)=0AadjA=det(A)I(ATadj(AT))T=(det(AT)I)T(adj(AT))TA=det(A)IadjAA=det(A)I

Cayley-Hamilton theorem #theorem

Let AFn×nThen PA(A)=0Explanation, not proof:PA(A)=det(AIA)=det(0)=0Proof:PA(λ)=λn+i=0n1aiλi(λIA)adj(λIA)=det(λIA)I=PA(λ)Iadj(λIA)Fn1[λ]n×n{B0,,Bn1}Fn×n:adj(λIA)=i=0n1λiBi(λIA)i=0n1λiBi=PA(λ)I(λIA)i=0n1λiBi=i=0nλiaiIλnλn1λn2λ1Left sideBn1Bn2ABn1Bn3ABn2B0AB1AB0Right sideIan1Ian2Ia1Ia0IAnBn1+An1(Bn2ABn1)++A(B0AB1)AB0==An+an1An1++a0I=PA(A)0=PA(A)