Linear-2 6

Minimal polynomial #definition

Let AFn×nLet f(x)F[x]f is called a minimal polynomial of A ifA is it’s root and there are no such polynomials of smaller degreeMinimal matrix polynomial is denoted as mA(x)Note: minimal polynomial is always monic

Existence and uniqueness of minimal polynomial #lemma

Let AFn×n!mA(x):mA(A)=0Proof:By Cayley-Hamilton theorem: PA(A)=0PA(x) is of degree nLet f=PA(x)Let us make n choices:Choice 1. degmA<degfChoice 2. mAF[x]:degmA<degff=mAAfter n choices, f definitely contains the minimal polynomialLet f,g be minimal polynomials of Af(x)=xk+i=1k1αixig(x)=xk+i=1k1βixif(x)g(x)Ft[x]:tk1,1αtβt(fg)(A)=0Contradiction!!f minimal polynomial of A

Minimal polynomial divides any polynomial with matrix as a root #lemma

Let AFn×nLet f(x)F[x]:f(A)=0Then mA(x)f(x)Proof:Case 0. f=0 and we are doneCase 1. f0degfdegmAq,rF[x]:f(x)=q(x)mA(x)+r(x)degr(x)<degmAf(A)=q(A)mA(A)=0+r(A)=0r(A)=0{r=01αr is a minimal polynomialr=0mAfCorollary:mAPARoots of mA(x) are roots of PA(x) and eigenvalues of A

Characteristic polynomial divides any polynomial to the power of n with matrix as a root #lemma

Let AFn×nLet f(x)F[x]:f(A)=0,degfnThen PAfnProof:Corollary:PAmAn

Corollary of two lemmas above

Minimal polynomial contains all irreducible factors of PAat least once and at most algebraic multiplicity of each factorAll eigenvalues of A are roots of mA

Jordan block #definition

Matrix A is called a Jordan block with element α ifAFn×n:Aij={αi=j1i=j10otherwiseJordan block is denoted as Jn(α)PJn(α)(λ)=(λα)nμJn(α)(α)=nγJn(α)(α)=1Useful property:(Jn(0)k)ij={1i=jk0otherwisemJn(α)(λ)=(λα)k,1knmJn(α)(Jn(α))=Jn(0)kmJn(α)=0k=nmJn(α)=PJn(α)

Jordan form #definition

Let AFn×nA is said to be a matrix in Jordan form ifA can be written as a diagonal block matrixwhere each block on the diagonal is a Jordan block and all other blocks are 0e.g. A=(J2(3)000J1(3)000J3(5))F6×6The common notation is: A=J2(3)J1(3)J3(5)

Jordan decomposition theorem #theorem

Let AFn×nThen1.AAJPA is factorizable into linear factors over F2.AJ is unique up to the order of Jordan blocks3.μA(α) is the sum of sizes of Jordan blocks corresponding to eigenvalue α4.γA(α) is the number of Jordan blocks corresponding to eigenvalue α5.Algebraic multiplicity of α in the minimal polynomialis the largest size of Jordan block corresponding to eigenvalue αExample:PA(λ)=(λ3)5(λ1)mA(λ)=(λ3)2(λ1)γA(3)=3AJ=(J1(1)0000J1(3)0000J2(3)0000J2(3))

Diagonalization and minimal polynomial #theorem

Let AFn×nADmA is factorizable into distinct linear factorsProof: Let ADPA(λ)=i=1k(λαi)μA(αi)mA(λ)=i=1k(λαi)ti,tiμA(αi)AJ=DLargest Jordan block corresponding to any eigenvalue of A is of size 1i[1,k]:ti=1mA(λ)=i=1k(λαi)Let mA be factorizable into distinct linear factorsmA(λ)=i=1k(λαi)PA(λ)=i=1k(λαi)μA(αi)AAJLargest Jordan block corresponding to any eigenvalue of A is of size 1AJ=DAD