Linear-2 8

Linear independence of orthogonal sets #lemma

SV is orthogonal and 0SS is a linear independence

Coordinates in orthogonal basis #definition

Let V be an inner product space over FLet B be an orthogonal basis of VLet vV{αi}i[1,n]:v=i=1nαivii[1,n]:αi=v,viv2Or in other words: [v]B=1v2(v,v1v,vn)Proof:Let {αi}i[1,n]:v=i=1nαivii[1,n]:v,vi=k=1nαkvk,vi=k=1nαkvk,vi=αivi,vi=αivi2i[1,n]:vi0vi>0i[1,n]:αi=v,vivi2

Pythagorean theorem #theorem

Let B be an orthogonal basis of VLet vVv=i=1nαivii=1nαivi2=i=1nαivi2=i=1n|αi|2vi2Proof:i=1nαivi2=i=1nαivi,i=1nαivi=i=1nj=1nαivi,αjvj==i=1nj=1nαiαjvi,vj=i=1nαiαivi,vi=i=1n|αi|2vi2

Orthogonal complement #definition

Let V be an inner product space over FLet SVSet of vectors that are orthogonal to all vectors in S is then called anorthogonal complement and denotedS={vV|sS:v,s=0}

Properties of orthogonal complements #lemma

Let V be an inner product space over FSVS is a subpspace of VProof:sS:0,s=00SLet v,uS,αFsS:v+αu,s=v,s+αu,s=0+α0=0v+αuSS is a subspce of V
S(S)Proof:(S)={vV|sS:v,s=0}Let sSsS:s,s=0s,s=0s(S)S(S)
ABABProof:Let vBbB:v,b=0ABaA:v,a=0vABA
S=(sp(S))Proof:Ssp(S)(sp(S))SLet vSLet usp(S)u=i=1kαisiv,u=v,i=1kαisi=i=1kαiv,si=0v(sp(S))S(sp(S))S=(sp(S))

Orthogonal projection #definition

Let V be an inner product spaceLet W be a subspace of VLet B be an orthogonal basis of WLet vVThen projection PW(v)=i=1kv,wiwi2wiis a vector such that wW:vwvPW(v)

Properties of orthogonal projection #lemma

vV:PW(v)W
vWPW(v)=vProof: Let vWB is an orthogonal basis v=i=1kv,wiwi2wiv=PW(v) Let PW(v)=vPW(v)WvW
PW(v)=0vWProof: Let PW(v)=0B is a linear independencewiW:v,wiwi2=0wiB:v,wi=0vB=(sp(B))=W Let vWwiB:v,wi=0PW(v)=0
wWvV:vPW(v),w=0Proof:wWw=i=1kαiwivPW(v),w=0v,w=PW(v),wv,w=v,i=1kαiwi=i=1kαiv,wiPW(v),w=PW(v),i=1kαiwi=i=1kβiwi,w==i=1kj=1kβiαjwi,wj=i=1kv,wiwi2αiwi,wi=i=1kαiv,wiv,w=PW(v),w