Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-2 8
Linear independence of orthogonal sets
#lemma
S
⊆
V
is orthogonal
and
0
∉
S
⟹
S
is a linear independence
Coordinates in orthogonal basis
#definition
Let
V
be an inner product space over
F
Let
B
be an orthogonal basis of
V
Let
v
∈
V
∃
{
α
i
}
i
∈
[
1
,
n
]
:
v
=
∑
i
=
1
n
α
i
v
i
⟹
∀
i
∈
[
1
,
n
]
:
α
i
=
⟨
v
,
v
i
⟩
‖
v
‖
2
Or in other words:
[
v
]
B
=
1
‖
v
‖
2
(
⟨
v
,
v
1
⟩
⋮
⟨
v
,
v
n
⟩
)
Proof:
Let
{
α
i
}
i
∈
[
1
,
n
]
:
v
=
∑
i
=
1
n
α
i
v
i
∀
i
∈
[
1
,
n
]
:
⟨
v
,
v
i
⟩
=
⟨
∑
k
=
1
n
α
k
v
k
,
v
i
⟩
=
∑
k
=
1
n
α
k
⟨
v
k
,
v
i
⟩
=
α
i
⟨
v
i
,
v
i
⟩
=
α
i
‖
v
i
‖
2
∀
i
∈
[
1
,
n
]
:
v
i
≠
0
⟹
‖
v
i
‖
>
0
⟹
∀
i
∈
[
1
,
n
]
:
α
i
=
⟨
v
,
v
i
⟩
‖
v
i
‖
2
Pythagorean theorem
#theorem
Let
B
be an orthogonal basis of
V
Let
v
∈
V
v
=
∑
i
=
1
n
α
i
v
i
⟹
‖
∑
i
=
1
n
α
i
v
i
‖
2
=
∑
i
=
1
n
‖
α
i
v
i
‖
2
=
∑
i
=
1
n
|
α
i
|
2
‖
v
i
‖
2
Proof:
‖
∑
i
=
1
n
α
i
v
i
‖
2
=
⟨
∑
i
=
1
n
α
i
v
i
,
∑
i
=
1
n
α
i
v
i
⟩
=
∑
i
=
1
n
∑
j
=
1
n
⟨
α
i
v
i
,
α
j
v
j
⟩
=
=
∑
i
=
1
n
∑
j
=
1
n
α
i
α
j
―
⟨
v
i
,
v
j
⟩
=
∑
i
=
1
n
α
i
α
i
―
⟨
v
i
,
v
i
⟩
=
∑
i
=
1
n
|
α
i
|
2
‖
v
i
‖
2
Orthogonal complement
#definition
Let
V
be an inner product space over
F
Let
S
⊆
V
Set of vectors that are orthogonal to all vectors in
S
is then called an
orthogonal complement and denoted
S
⊥
=
{
v
∈
V
|
∀
s
∈
S
:
⟨
v
,
s
⟩
=
0
}
Properties of orthogonal complements
#lemma
Let
V
be an inner product space over
F
S
⊆
V
⟹
S
⊥
is a subpspace of
V
Proof:
∀
s
∈
S
:
⟨
0
,
s
⟩
=
0
⟹
0
∈
S
⊥
Let
v
,
u
∈
S
⊥
,
α
∈
F
∀
s
∈
S
:
⟨
v
+
α
u
,
s
⟩
=
⟨
v
,
s
⟩
+
α
⟨
u
,
s
⟩
=
0
+
α
⋅
0
=
0
⟹
v
+
α
u
∈
S
⊥
⟹
S
⊥
is a subspce of
V
S
⊆
(
S
⊥
)
⊥
Proof:
(
S
⊥
)
⊥
=
{
v
∈
V
|
∀
s
′
∈
S
⊥
:
⟨
v
,
s
′
⟩
=
0
}
Let
s
∈
S
∀
s
′
∈
S
⊥
:
⟨
s
′
,
s
⟩
=
0
⟹
⟨
s
,
s
′
⟩
=
0
⟹
s
∈
(
S
⊥
)
⊥
⟹
S
⊆
(
S
⊥
)
⊥
A
⊆
B
⟹
A
⊥
⊇
B
⊥
Proof:
Let
v
∈
B
⊥
∀
b
∈
B
:
⟨
v
,
b
⟩
=
0
⟹
A
⊆
B
∀
a
∈
A
:
⟨
v
,
a
⟩
=
0
⟹
v
∈
A
⊥
⟹
B
⊥
⊆
A
⊥
S
⊥
=
(
s
p
(
S
)
)
⊥
Proof:
S
⊆
s
p
(
S
)
⟹
(
s
p
(
S
)
)
⊥
⊆
S
⊥
Let
v
∈
S
⊥
Let
u
∈
s
p
(
S
)
u
=
∑
i
=
1
k
α
i
s
i
⟨
v
,
u
⟩
=
⟨
v
,
∑
i
=
1
k
α
i
s
i
⟩
=
∑
i
=
1
k
α
i
―
⟨
v
,
s
i
⟩
=
0
⟹
v
∈
(
s
p
(
S
)
)
⊥
⟹
S
⊥
⊆
(
s
p
(
S
)
)
⊥
⟹
S
⊥
=
(
s
p
(
S
)
)
⊥
Orthogonal projection
#definition
Let
V
be an inner product space
Let
W
be a subspace of
V
Let
B
be an orthogonal basis of
W
Let
v
∈
V
Then projection
P
W
(
v
)
=
∑
i
=
1
k
⟨
v
,
w
i
⟩
‖
w
i
‖
2
w
i
is a vector such that
∀
w
∈
W
:
‖
v
−
w
‖
≥
‖
v
−
P
W
(
v
)
‖
Properties of orthogonal projection
#lemma
∀
v
∈
V
:
P
W
(
v
)
∈
W
v
∈
W
⟺
P
W
(
v
)
=
v
Proof:
⟹
Let
v
∈
W
B
is an orthogonal basis
⟹
v
=
∑
i
=
1
k
⟨
v
,
w
i
⟩
‖
w
i
‖
2
w
i
⟹
v
=
P
W
(
v
)
⟸
Let
P
W
(
v
)
=
v
P
W
(
v
)
∈
W
⟹
v
∈
W
P
W
(
v
)
=
0
⟺
v
∈
W
⊥
Proof:
⟹
Let
P
W
(
v
)
=
0
B
is a linear independence
⟹
∀
w
i
∈
W
:
⟨
v
,
w
i
⟩
‖
w
i
‖
2
=
0
⟹
∀
w
i
∈
B
:
⟨
v
,
w
i
⟩
=
0
⟹
v
∈
B
⊥
=
(
s
p
(
B
)
)
⊥
=
W
⊥
⟸
Let
v
∈
W
⊥
⟹
∀
w
i
∈
B
:
⟨
v
,
w
i
⟩
=
0
⟹
P
W
(
v
)
=
0
w
∈
W
⟺
∀
v
∈
V
:
⟨
v
−
P
W
(
v
)
,
w
⟩
=
0
Proof:
w
∈
W
⟹
w
=
∑
i
=
1
k
α
i
w
i
⟨
v
−
P
W
(
v
)
,
w
⟩
=
0
⟺
⟨
v
,
w
⟩
=
⟨
P
W
(
v
)
,
w
⟩
⟨
v
,
w
⟩
=
⟨
v
,
∑
i
=
1
k
α
i
w
i
⟩
=
∑
i
=
1
k
α
i
―
⟨
v
,
w
i
⟩
⟨
P
W
(
v
)
,
w
⟩
=
⟨
P
W
(
v
)
,
∑
i
=
1
k
α
i
w
i
⟩
=
∑
i
=
1
k
β
i
⟨
w
i
,
w
⟩
=
=
∑
i
=
1
k
∑
j
=
1
k
β
i
α
j
―
⟨
w
i
,
w
j
⟩
=
∑
i
=
1
k
⟨
v
,
w
i
⟩
‖
w
i
‖
2
α
i
―
⟨
w
i
,
w
i
⟩
=
∑
i
=
1
k
α
i
―
⟨
v
,
w
i
⟩
⟹
⟨
v
,
w
⟩
=
⟨
P
W
(
v
)
,
w
⟩