Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Data-structures 1
Prove:
O
(
n
2
)
⊆
O
(
n
3
)
Proof:
Let
f
(
n
)
∈
O
(
n
2
)
f
(
n
)
≤
c
⋅
n
2
Let
n
0
′
=
m
a
x
(
n
0
,
1
)
f
(
n
)
≤
c
⋅
n
2
≤
c
⋅
n
3
⟹
f
(
n
)
∈
O
(
n
3
)
⟹
O
(
n
2
)
⊆
O
(
n
3
)
Prove:
n
2
log
(
n
)
+
10
n
∈
Ω
(
5
n
2
)
Let
n
≥
32
⟹
log
(
n
)
≥
log
(
32
)
=
5
⟹
n
2
log
(
n
)
+
10
n
≥
n
2
log
(
n
)
≥
5
n
2
Alternative
n
≥
2
⟹
log
(
n
)
≥
1
⟹
n
2
log
(
n
)
+
10
n
≥
1
5
5
n
2
=
n
2
Prove:
f
(
n
)
∈
Ω
(
g
(
n
)
)
⟹
Ω
(
f
(
n
)
)
⊆
Ω
(
g
(
n
)
)
Proof:
Let
f
(
n
)
∈
Ω
(
g
(
n
)
)
⟹
∀
n
≥
n
f
:
f
(
n
)
≥
c
f
g
(
n
)
Let
h
(
n
)
∈
Ω
(
f
(
n
)
)
⟹
∀
n
≥
n
h
:
h
(
n
)
≥
c
h
f
(
n
)
⟹
∀
n
≥
m
a
x
(
n
h
,
n
f
)
:
h
(
n
)
≥
c
h
f
(
n
)
≥
c
h
c
f
g
(
n
)
⟹
h
(
n
)
∈
Ω
(
g
(
n
)
)
⟹
Ω
(
f
(
n
)
)
⊆
Ω
(
g
(
n
)
)
Prove:
2
n
+
15
∈
o
(
n
2
)
Proof:
Let
c
>
0
Let
n
0
=
m
a
x
(
1
,
17
c
)
∀
n
≥
n
0
:
2
n
+
15
≤
17
n
≤
c
17
c
n
≤
c
n
0
n
≤
c
n
2
⟹
2
n
+
15
∈
o
(
n
2
)
Prove:
5
n
log
(
n
)
∈
ω
(
n
)
Proof:
Let
c
>
0
Let
n
0
=
2
c
/
5
∀
n
≥
n
0
:
5
n
log
(
n
)
≥
5
n
log
(
2
c
/
5
)
=
c
n
⟹
5
n
log
(
n
)
∈
ω
(
n
)
∃
lim
n
→
∞
f
(
n
)
g
(
n
)
=
L
L
=
0
⟺
f
(
n
)
∈
o
(
g
(
n
)
)
L
≠
0
∈
R
⟺
f
(
n
)
∈
Θ
(
g
(
n
)
)
L
=
∞
⟹
f
(
n
)
∈
ω
(
g
(
n
)
)
Proof for
L
=
0
:
⟹
∀
ε
>
0
:
∃
n
0
∈
N
0
:
∀
n
≥
n
0
:
f
(
n
)
g
(
n
)
<
ε
g
(
n
)
>
0
⟹
f
(
n
)
<
ε
g
(
n
)
⟹
f
(
n
)
≤
ε
g
(
n
)
Prove:
log
(
n
!
)
∈
Θ
(
n
log
(
n
)
)
Proof:
log
(
n
!
)
≤
log
(
n
n
)
=
n
log
(
n
)
n
2
log
(
n
2
)
=
1
2
n
(
log
(
n
)
−
log
(
2
)
)
=
1
2
n
log
(
n
)
−
1
2
n
n
≥
4
⟹
log
(
n
)
≥
2
⟹
log
(
n
)
2
≥
1
⟹
log
(
n
2
n
/
2
)
=
1
2
n
log
(
n
)
−
1
2
n
≥
1
2
n
log
(
n
)
−
1
4
n
log
(
n
)
=
1
2
n
log
(
n
)
⟹
1
2
n
log
(
n
)
≤
log
(
(
n
2
)
n
/
2
)
≤
log
(
n
!
)
≤
n
log
(
n
)
⟹
log
(
n
!
)
∈
Θ
(
n
log
(
n
)
)