Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Data-structures 2
T
(
n
)
=
2
T
(
n
−
3
)
+
2
=
=
2
2
T
(
n
−
3
⋅
2
)
+
2
2
+
2
=
=
2
3
T
(
n
−
3
⋅
3
)
+
2
3
+
2
2
+
2
=
⋯
=
2
i
T
(
n
−
3
i
)
+
2
i
+
1
−
2
Base case.
i
=
1
T
(
n
)
=
2
i
T
(
n
−
3
i
)
+
2
i
+
1
−
2
=
2
T
(
n
−
3
)
+
2
Induction step. Let
T
(
n
)
=
2
i
−
1
T
(
n
−
3
(
i
−
1
)
)
+
2
i
−
1
+
1
−
2
T
(
n
)
=
2
i
−
1
(
2
T
(
n
−
3
i
)
+
2
)
+
2
i
−
1
+
1
−
2
=
2
i
T
(
n
−
3
i
)
+
2
i
+
1
−
2
⟹
∀
1
≤
i
≤
n
3
:
T
(
n
)
=
2
i
T
(
n
−
3
i
)
+
2
i
+
1
−
2
T
(
n
)
=
2
n
/
3
T
(
0
)
+
2
n
/
3
+
1
−
2
=
3
⋅
2
n
/
3
−
2
⟹
T
(
n
)
=
Θ
(
2
n
/
3
)
T
(
n
)
=
2
T
(
n
2
)
+
n
Base case.
∀
c
≥
1
:
T
(
1
)
≤
c
⋅
1
2
⟹
T
(
1
)
∈
O
(
1
)
Induction step. Let
∀
n
′
<
n
:
T
(
n
′
)
=
O
(
n
′
2
)
T
(
n
)
=
2
T
(
n
2
)
+
n
≤
n
2
2
+
n
≤
2
n
2
⟹
∀
n
≥
1
:
T
(
n
)
≤
2
n
2
⟹
T
(
n
)
=
O
(
n
)
T
(
n
)
=
T
(
n
2
)
+
T
(
n
3
)
+
n
Base case.
∀
c
≥
1
:
T
(
1
)
≤
c
⋅
1
Induction step. Let
∀
n
′
<
n
:
T
(
n
′
)
=
O
(
n
′
)
T
(
n
)
=
T
(
n
2
)
+
T
(
n
3
)
+
n
≤
c
1
2
n
+
c
2
3
n
+
n
=
(
c
1
2
+
c
2
3
+
1
)
n
⟹
∀
n
:
T
(
n
)
≤
(
c
1
2
+
c
2
3
+
1
)
n
⟹
T
(
n
)
=
O
(
n
)
0
<
α
<
1
T
(
n
)
=
T
(
α
n
)
+
T
(
(
1
−
α
)
n
)
+
n
Let
∀
n
′
<
n
:
T
(
n
′
)
=
O
(
n
′
log
n
′
)
Induction shortcut:
T
(
n
)
≤
c
^
α
n
log
(
α
n
)
+
c
(
1
−
α
)
n
log
(
(
1
−
α
)
n
)
+
n
=
=
c
^
α
n
log
n
+
c
^
α
n
log
α
+
c
(
1
−
α
)
n
log
n
+
c
(
1
−
α
)
n
log
(
1
−
α
)
=
=
c
1
n
+
c
2
n
log
n
≤
n
≥
2
(
c
1
+
c
2
)
n
log
n
⟹
T
(
n
)
=
O
(
n
log
n
)
T
(
n
)
=
2
T
(
n
)
+
log
n
Let
m
=
log
n
⟹
n
=
2
m
Let
S
(
m
)
=
T
(
2
m
)
=
T
(
n
)
S
(
m
)
=
2
S
(
m
2
)
+
m
S
(
m
)
=
Θ
(
m
log
m
)
⟹
T
(
n
)
=
Θ
(
log
n
log
log
n
)
T
(
n
)
=
T
(
n
)
+
1
m
=
log
n
⟹
n
=
2
m
S
(
m
)
=
S
(
m
2
)
+
1
log
2
(
1
)
=
0
⟹
By master theorem:
S
(
m
)
=
Θ
(
m
0
log
m
)
=
Θ
(
log
m
)
⟹
T
(
n
)
=
Θ
(
log
log
n
)