Discrete-math 10

Discrete-math 10

Prove: (nk)(km)=(nm)(nmkm)Proof (algebraic):(nk)(km)=n!(nk)!k!k!(km)!m!=n!(nk)!(km)!m!(nm)(nmkm)=n!(nm)!m!(nm)!(nk)!(km)!=n!(nk)!(km)!m!Proof (combinatorial):How many ways we can choose k workers out of n people such that m of them are managers?Let us first choose m managers out of n peopleand then choose km people out of nk people left, which is:(nm)(nmkm)Now let us first choose k people out of n peopleand then choose m out of these k people to be managers, which is:(nk)(km)

Fermat's identity

Let n,kN,k<ni=kn(ik)=(n+1k+1)Proof:How many ways there are to choose k+1 people from the group of n+1 people?(n+1k+1)Now let’s pick the i’th tallest personLet’s then pick k people who are shorter than this personNumber of ways to pick them is: i=k+1n+1(i1k)=j=k=i1j=kn(jk)This way, we have chosen some k+1 peoplei=kn(ik)=(n+1k+1)
i=0n1(n+ii)=(2nn1)Proof:i=0n1(n+in)=(2nn+1)Let k=i+nk=n2n1(kn)=(2n1+1n+1)=(2nn+1)
Let nN{0}Sr={(x1,x2,,xr)|i=1rxi=n}r=1n|Sr|=r=1n(r+n1r1)=k=0n1(k+nk)=(2nk1)=(2nn1)

Multinomials

How many strings can we write down with letters of word "mississippi"?Solution:4 positions for "i", 4 positions for "s", 2 positions for "p", 1 position for "m"(114)(74)(32)(11)Multinomial is a "multiple choice" binomial:(114,4,2,1)=(114)(74)(32)(11)=11!7!4!7!3!4!3!2!1!=11!4!4!2!1!(nn1,,nk)=n!n1!n2!nk!=n!i=1kni!
2 pizzas in size S, M, L or XL8 toppingsSolution:Number of different pizzas:428=210Number of ways to choose 2 pizzas out of all possible pizzas is:(210+212)=(210+12)
How many polinomials of degree 6 there are such that:All coefficients are non-negative integers, p(1)=30,p(1)=12p(x)=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6p(1)=a0+a1+a2+a3+a4+a5+a6=30p(1)=a0a1+a2a3+a4a5+a6=12{a0+a1+a2+a3+a4+a5+a6=30a1+a3+a5=9{a0+a2+a4+a6=21a1+a3+a5=9(4+21121)(3+919)=(2421)(119)
Let n2S={1,,n+1}T={(x,y,z)|{x<zy<zx,y,zS}|T|=k=1nk2=(n+12)+2(n+13)Proof:Let zSNumber of ways to choose x,y<zis:(z1)(z1)z=1n+1(z1)2=k=1nk2Let x=yWe need to choose two numbersx,z(n+12)Let xyWe need to choose three numbersx,y,zx<y and y<x are symmetrical and different2(n+13)(n+12)+2(n+13)
Let n,m,rNrmni=0r(mi)(nri)=(m+nr)Proof:Let us choose r people from m boys and n girls:(m+nr)Let us now choose i boys first and then choose the girls leftAi={ways to choose i from m boys and ri from n girls}|Ai|=(mi)(nri)ijAiAj=|i=0rAi|=i=0r|Ai|=i=0r(mi)(nri)