Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Discrete-math 2
Discrete-math 2
Exercise
Prove:
¬
(
∀
a
∃
b
(
a
∣
b
→
(
(
a
≤
b
)
∧
(
a
+
b
<
a
∗
b
)
)
)
)
∃
a
∀
b
¬
(
(
a
∣
b
→
(
(
a
≤
b
)
∧
(
a
+
b
<
a
∗
b
)
)
)
)
∃
a
∀
b
(
a
∣
b
∧
¬
(
(
a
≤
b
)
∧
(
a
+
b
<
a
∗
b
)
)
)
∃
a
∀
b
(
a
∣
b
∧
(
a
>
b
∨
(
a
+
b
≥
a
∗
b
)
)
)
∃
a
∀
b
(
a
∣
b
∧
(
a
+
b
≥
a
∗
b
)
)
∃
a
=
1
:
∀
b
(
T
r
u
e
∧
(
b
+
1
≥
b
)
)
≡
T
r
u
e
Exercise
P
,
Q
over
Z
Prove or disprove:
∀
a
(
(
P
(
a
)
∨
Q
(
a
)
)
→
(
(
∀
a
:
P
(
a
)
)
)
∨
(
∀
a
:
Q
(
a
)
)
)
Let
P
(
a
)
≡
2
∣
a
;
Q
(
a
)
≡
2
∤
a
∀
a
:
P
(
a
)
≡
F
a
l
s
e
;
∀
a
:
Q
(
a
)
≡
F
a
l
s
e
∀
a
:
P
(
a
)
∨
Q
(
a
)
≡
T
r
u
e
Exercise
Prove or disprove:
(
∀
a
:
P
(
a
)
)
∨
(
∀
a
:
Q
(
a
)
)
→
∀
a
:
P
(
a
)
∨
Q
(
a
)
Let
(
∀
a
:
P
(
a
)
)
∨
(
∀
a
:
Q
(
a
)
)
≡
T
r
u
e
Let
a
∈
Z
∀
a
:
P
(
a
)
⟹
∀
a
:
P
(
a
)
∨
Q
(
a
)
∀
a
:
Q
(
a
)
⟹
∀
a
:
P
(
a
)
∨
Q
(
a
)
⟹
(
∀
a
:
P
(
a
)
)
∨
(
∀
a
:
Q
(
a
)
)
→
∀
a
:
P
(
a
)
∨
Q
(
a
)
Exercise
Prove:
{
6
n
∣
n
∈
N
}
⊆
{
2
n
∣
n
∈
N
}
∀
x
∈
B
:
x
=
6
m
=
2
∗
3
m
∃
n
=
3
m
:
x
=
2
n
n
∈
N
⟹
x
∈
A
⟹
A
⊆
B
Exercise
A
=
{
X
|
X
∈
N
}
Prove:
B
=
{
1
,
2
,
7
}
∈
A
∀
x
∈
B
:
x
∈
N
⟹
B
⊆
N
⟹
B
∈
A