Discrete-math 3

Discrete-math 3

Exercise

Nodd={2n1nN}Neven={2nnN}Let aNevenThere exists n, such as a=2na is a product of 2 natural numbers, so aNLet bNoddThere exists n, such as b=2n1b is a difference of two natural numbers, so bZnNn12n11bN(NevenNodd)NLet nN, if n is odd, there exists kN:n=2k1Noddif n is even, there exists kN:n=2kNevennNnNoddnNevenN(NevenNodd)(NoddNeven)=N

Exercise

An={mn|mN},nNProve: nNAn=Q+Let xnNAnThen there exists nN, such that xAnTherefore exists mN, such that x=mnQ+nNAnQ+Let xQ+Then exists mZ,nN, such that x=mn,x>0Since x>0m>0 is also true, thus mNTherefore xAnxnNAnQ+nNAnnNAn=Q+