Discrete-math 5

Discrete-math 5

Let (A,R) be a partially ordered finite setProve: aA:a is a minimal elementProof:Base case. Let |A|=1A={a}a is a minimal elementInduction step. Let |A|=n+1Let aA,B=A{a}Let S=(B×B)RS is a parital ordering relation (proved in HW 5)|B|=n, by induction assumption bB:b is a minimal element of BIf aRb,let a be not minimal in A:xA:xRaxaxaxBxRaaRbxRbxBx=bbRaaRba=b Contradiction!a is a minimal element of AIf ab, let b be not minimal in A:xA:xRbxbxRbxaxB[xRbx=b]x=bContradiction!b is a minimal element of ABase case + Induction stepProved by induction