Discrete-math 6

Discrete-math 6

Let BP(A)Then sup(B)=XBXinf(B)=XBXProof for supremum:By properties of inclusion: XXYXBX is an upper boundLet AXBX such that A is an upper bound of BThen a(XBX)AAiB:aAiaAaAiAAAiBA is not an upper bound of BContradiction!sup(B)=XBX
Let A,B be finite sets,|A|=n,|B|=m[f:AB:f is surjective]mnProof:A={a1,a2,,an},B={b1,b2,,bm}Let mnLet f={(ai,bi)|i[1,m]}f(ai)=bii[1,m]:aiAbiBbBaA:f(a)=bmnf:f is surjective(1)Let f:AB:f is surjectivef is surjectiveIm(f)=B={f(a1),f(a2),,f(an)}{|B|=|A|f is one-to-one|B|<|A|otherwisemnf:AB:f is surjectivemn(2)(1) and (2)f:AB:f is surjectivemn