Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-1 10
(
∑
a
n
\
∑
|
a
n
|
Converge
Diverge
Converge
Converge abs
Converge cond
Diverge
X
D
i
v
e
r
g
e
)
∑
n
=
1
∞
(
−
1
)
n
⋅
1
n
converge or diverge?
∑
n
=
1
∞
|
(
−
1
)
n
⋅
1
n
|
=
∑
n
=
1
∞
1
n
diverge
a
n
=
1
n
→
0
is monotonically decreasing
⟹
By the alternating series test:
∑
n
=
1
∞
(
−
1
)
n
⋅
1
n
converge conditionally
∑
n
=
2
∞
(
−
1
)
n
n
ln
3
n
∑
n
=
2
∞
|
(
−
1
)
n
n
ln
3
n
|
=
∑
n
=
2
∞
1
n
ln
3
n
a
n
=
1
n
ln
3
n
⟹
a
2
n
=
1
2
n
ln
3
(
2
n
)
=
1
2
n
n
3
ln
3
2
⟹
∑
n
=
2
∞
2
n
2
n
n
3
ln
3
2
=
1
ln
3
2
∑
n
=
2
∞
1
n
3
converge
⟹
∑
n
=
2
∞
(
−
1
)
n
n
ln
3
n
converge absolutely
∑
n
=
1
∞
sin
(
2
n
)
n
∑
n
=
1
∞
sin
(
2
n
)
is bounded
a
n
=
1
n
→
0
is monotonically decreasing
⟹
By Dirichlet’s test:
∑
n
=
1
∞
sin
(
2
n
)
n
converge
1
1
+
1
3
−
2
5
+
1
7
+
1
9
−
2
11
+
…
∑
n
=
1
∞
b
n
2
n
−
1
b
n
=
{
1
n
mod
3
=
1
1
n
mod
3
=
2
−
2
3
∣
n
Partial sums of
b
n
:
S
N
=
1
,
2
,
0
,
1
,
2
,
0
,
…
⟹
|
S
N
|
≤
2
a
n
=
1
2
n
−
1
→
0
is monotonically decreasing
⟹
By Dirichlet’s test:
∑
n
=
1
∞
b
n
2
n
−
1
lim
x
→
0
1
−
cos
x
x
2
=
1
2
Proof:
lim
x
→
0
1
−
cos
x
x
2
=
lim
x
→
0
1
−
cos
2
x
x
(
1
+
cos
x
)
=
lim
x
→
0
(
sin
x
x
)
2
1
1
+
cos
x
=
1
2
⋅
1
2
=
1
2
lim
x
→
0
(
1
sin
x
−
1
tan
x
)
=
lim
x
→
0
(
1
sin
x
−
cos
x
sin
x
)
=
lim
x
→
0
1
−
cos
x
sin
x
=
=
lim
x
→
0
x
sin
x
⏟
→
1
1
−
cos
x
x
2
⏟
→
1
2
x
⏟
→
0
=
1
⋅
1
2
⋅
0
=
0
lim
x
→
2
sin
(
6
x
−
12
)
x
−
2
=
0
2
=
lim
x
→
2
sin
(
6
x
−
12
)
6
x
−
12
⏟
→
1
⋅
6
x
−
12
x
−
2
=
=
lim
x
→
2
6
⋅
x
−
2
x
−
2
⋅
(
x
+
2
)
=
12
2
lim
x
→
∞
x
⋅
2
−
x
+
arctan
x
x
=
=
lim
x
→
∞
2
−
x
⏟
→
0
+
arctan
x
⏞
−
π
/
2
≤
arctan
x
≤
π
/
2
x
⏟
→
0
=
0