Infi-1 10

(an\|an|ConvergeDivergeConvergeConverge absConverge condDivergeXDiverge)
n=1(1)n1n converge or diverge?n=1|(1)n1n|=n=11n divergean=1n0 is monotonically decreasingBy the alternating series test: n=1(1)n1n converge conditionally
n=2(1)nnln3nn=2|(1)nnln3n|=n=21nln3nan=1nln3na2n=12nln3(2n)=12nn3ln32n=22n2nn3ln32=1ln32n=21n3 convergen=2(1)nnln3n converge absolutely
n=1sin(2n)nn=1sin(2n) is boundedan=1n0 is monotonically decreasingBy Dirichlet’s test: n=1sin(2n)n converge
11+1325+17+19211+n=1bn2n1bn={1nmod3=11nmod3=223nPartial sums of bn:SN=1,2,0,1,2,0,|SN|2an=12n10 is monotonically decreasingBy Dirichlet’s test: n=1bn2n1
limx01cosxx2=12Proof:limx01cosxx2=limx01cos2xx(1+cosx)=limx0(sinxx)211+cosx=1212=12
limx0(1sinx1tanx)=limx0(1sinxcosxsinx)=limx01cosxsinx==limx0xsinx11cosxx212x0=1120=0
limx2sin(6x12)x2=02=limx2sin(6x12)6x1216x12x2==limx26x2x2(x+2)=122
limxx2x+arctanxx==limx2x0+arctanxπ/2arctanxπ/2x0=0