Infi-1 11

Infi-1 11

Exercise

Let f(x)>0xR:f(x)limx0f(x)=0Prove: 1.limnf(1n)=02.limnf(f(1n))=0Proof:limx0f(x)=0xn:[xn0,xn0f(xn)0]Let xn=1n,xn0,xn0f(xn)=f(1n)0Let xn=f(1n),xn0,xn0f(xn)=f(f(1n))0

Side limits

limxx0+f(x)=Lxn:[xnx0,xn>x0f(xn)L]limxx0f(x)=Lxn:[xnx0,xn<x0f(xn)L]

Exercise

limx11x|x1|=1Proof:Let xn1,xn<1limnf(xn)=limn1xn|xn1|=xn<1limn1xn1xn=limn1=1

Exercise

limx0xsinx21+cosx=limx0xsinx(2+1+cosx)1cosx==limx0x2sinxx(2+1+cosx)x21cosxx2=limx0sinxx111cosxx22(2+1+cosx2)==1222=42

Continuity

limxx0f(x)=f(x0)

Exercise

Prove or disprove:f,g not continuous at x01.f+g not continuous at x02.fg not continuous at x0Disproof for 1.Let f(x)=D(x)={1xQ0otherwiseLet g(x)=D(x)={1xQ0otherwise(f+g)(x)=0 which is continuousDisproof for 2.Let f(x)=D(x)Let g(x)=D(x)={0xQ1otherwise(fg)(x)=0 which is continuous

Exercise

Let fxR:f(x)a,bR:f(a+b)=f(a)+f(b)f is continuous at 0Prove:1.f(0)=02.f is continuous on RProof:Let a=b=0f(a+b)=f(a)+f(b)=f(0)=f(0)+f(0)f(0)=0aR:limxaf(x)=f(a)Let xna,xnaLet b=alimnf(xn)=limnf(xna+a)==limn(f(xna0)+f(a))=f(0)+f(a)=0+f(a)=f(a)f is continuous at af is continuous on R
limx0ln(1+x)x=1limx0ax1x=lna

Exercise

limx0ln(1+x)ln(1x)x=limx0(ln(1+x)xln(1x)x)==limx0ln(1+x)x+ln(1x)x=1+1=2limx0e2x1e3x1=limx0e2x12x12xe3x13x13x=23

Classification of discontinuities

Removable

limxaf(x)Rlimxaf(x)f(a)

Jump (First kind/type)

limxaf(x)R,limxa+f(x)Rlimxaf(x)limxa+f(x)

Essential (Second kind/type)

limxaf(x)limxa+f(x)Note: not exists or ±

Exercise

f(x)=(1x1x+1)1x11x0,±1 are discontinuitiesf(x)=x+1xx(x+1)xx+1x(x1)=x(x1)x(x+1)limx0x(x1)x(x+1)=1Removablelimx1x(x1)x(x+1)=0Removablelimx(1)x(x1)2x(x+1)0=Essential