Infi-1 12

Infi-1 12

Derivative

f(x0)=limxx0f(x)f(x0)xx0f(x0)=limh0f(x0+h)f(x0)h

Exercise

f(x)=x3f(x)=?Solution:Let aRf(a)=limh0f(a+h)f(a)h=limh0(a+h)3a3h=limh0a3+3a2h+3ah2+h3a3h==limh03a2+3ah+h2=3a2f(x)=3x2

Exercise

f(x)={x2sin(1x2)x00x=0Find f(0)Solution:f(0)=limh0f(0+h)f(0)h=limh0f(h)h=h0limh0h2sin(1h2)h=limh0hsin(1h2)1sin(1h2)1=0

Exercise

f(x)={4xx0sin(3x)x>0Find f(0)Solution:f(0)=limx0f(x)f(0)x0=limx0f(x)xlimx0+f(x)x=limx0+sin(3x)x=limx0+sin(3x)3x3=3limx0f(x)x=limx04xx=4limx0+f(x)xlimx0f(x)xf(0)
f(x)=|x|f(0)=limh0f(0+h)f(0)h=limh0|h|hlimh0+|h|h=1limh0|h|h=1limh0+|h|hlimh0|h|hf(0)

Exercise

f(x)={1xsin(ax2)x<02x2+bx+1x>00x=0Find a,bR such that f is differentiable on RSolution:limx0+f(x)=limx0+2x2+bx+1=1limx0f(x)0f is not continuous at 0 for any a,bf is not differentiable at 0 for all a,b

Exercise

f(x)={ax+9xbbxx2x<bFind a,bR such that f is differentiable on RSolution:limxbf(x)=?f(b)limxbf(x)=limxbbxx2=x(bx)=0limxb+f(x)=limxb+ax+9=ab+9ab+9=0f is continuous at bLet ab+9=0b=9af(b)=limh0f(b+h)f(b)h=limh0f(b+h)hlimh0+f(b+h)h=limh0+ab+ah+9h=alimh0f(b+h)h=limh0b(b+h)(b+h)2h=limh0=b2+bhb22bhh2h==limh0bhh2h=bf(b)a=b{ab+9=0a=b{a=3,b=3a=3,b=3