Infi-1 13

Infi-1 13

Lagrange's mean value theorem

This is a generalization of Rolle’s theoremLet f be continuous on [a,b] and differentiable on (a,b)Then ξ(a,b):f(ξ)=f(b)f(a)ba

Exercise

0<yx<π2xycos2(y)+tan(y)tanxxycos2(x)+tanyLet x=ytanytanxtanytanx=tanyLet xyxycos2(y)tanxtanyxycos2(x)1cos2(y)tanxtanyxy1cos2(x)Let f(t)=tant on interval (y,x)tant is continuous on (0,π2)[y,x]tant is differentiable on (o,π2)(y,x)By the mean value theorem: c(y,x):f(c)=tanxtanyxyLet g(t)=f(t)=1cos2(t)cost is monotonically decreasing on (0,π2)cos2(t) is monotonically decreasing on (0,π2)1cos2(t) is monotonically increasing on (o,π2)d(y,x):1cos2(y)1cos2(d)1cos2(x)c(y,x):tanxtanyxy=f(c)=g(c)=1cos2(c)1cos2(y)tanxtanyxy1cos2(x)xycos2(y)+tan(y)tanxxycos2(x)+tany

Exercise

Prove: 0<a<b:bab<ln(ba)<baaProof:ln(ba)=ln(b)ln(a)babab<ln(ba)<baa1b<lnblnaba<1aLet f(t)=lntlnt is differentiable on (0,)[a,b]By the mean value theorem: c(a,b):f(c)=lnblnabaLet g(t)=f(t)=1t1t is monotonically decreasing on (0,)[a,b]d(a,b):1b<1d<1ac(a,b):lnblnaba=f(c)=g(c)=1c1b<lnblnaba<1abab<ln(ba)<baa

Cauchy's theorem

Let f,g be continuous on [a,b]and differentiable on (a,b)Let x(a,b):g(x)0Then c(a,b):f(c)g(c)=f(b)f(a)g(b)g(a)

Exercise

Let 0<x<1Prove: ln(x2+1)tanx<2xx2+1Proof:ln(x2+1)tanx=ln(x2+1)ln(02+1)tanxtan0Let f(t)=ln(t2+1)Let g(t)=tantf(t)=2tt2+1t(0,1):g(t)=1cos2(t)0By Cauchy’s theorem: c(0,x):f(c)g(c)=ln(x2+1)ln(02+1)tanxtan0f(c)g(c)=2cc2+1cos2(c)c(0,x):cos2(c)12cc2+1cos2(c)2cc2+1Let h(t)=2tt2+1h(t)=2(t2+1)4t2(t2+1)2=22t2(t2+1)2t<1t2<122t2>0h(t)>0h(t) is monotonically increasing on(0,1)d(0,x):0<2dd2+1<2xx2+1c(0,x):ln(x2+1)ln(02+1)tanxtan0=f(c)g(c)=2cc2+1<2xx2+1ln(x2+1)tanx<2xx2+1
limx1(2x)tan(π2x)=limx1etan(π2x)ln(2x)limx1tan(π2x)ln(2x)=limx1ln(2x)(tan(π2x))1=Llimx112xπ2sin2(π2x)=2πlimx1(2x)tan(π2x)=e2/π