Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-1 13
Infi-1 13
Lagrange's mean value theorem
This is a generalization of Rolle’s theorem
Let
f
be continuous on
[
a
,
b
]
and differentiable on
(
a
,
b
)
Then
∃
ξ
∈
(
a
,
b
)
:
f
′
(
ξ
)
=
f
(
b
)
−
f
(
a
)
b
−
a
Exercise
0
<
y
≤
x
<
π
2
x
−
y
cos
2
(
y
)
+
tan
(
y
)
≤
tan
x
≤
x
−
y
cos
2
(
x
)
+
tan
y
Let
x
=
y
tan
y
≤
tan
x
≤
tan
y
⟺
tan
x
=
tan
y
Let
x
≠
y
x
−
y
cos
2
(
y
)
≤
tan
x
−
tan
y
≤
x
−
y
cos
2
(
x
)
1
cos
2
(
y
)
≤
tan
x
−
tan
y
x
−
y
≤
1
cos
2
(
x
)
Let
f
(
t
)
=
tan
t
on interval
(
y
,
x
)
tan
t
is continuous on
(
0
,
π
2
)
⊇
[
y
,
x
]
tan
t
is differentiable on
(
o
,
π
2
)
⊇
(
y
,
x
)
⟹
By the mean value theorem:
∃
c
∈
(
y
,
x
)
:
f
′
(
c
)
=
tan
x
−
tan
y
x
−
y
Let
g
(
t
)
=
f
′
(
t
)
=
1
cos
2
(
t
)
cos
t
is monotonically decreasing on
(
0
,
π
2
)
⟹
cos
2
(
t
)
is monotonically decreasing on
(
0
,
π
2
)
⟹
1
cos
2
(
t
)
is monotonically increasing on
(
o
,
π
2
)
⟹
∀
d
∈
(
y
,
x
)
:
1
cos
2
(
y
)
≤
1
cos
2
(
d
)
≤
1
cos
2
(
x
)
∃
c
∈
(
y
,
x
)
:
tan
x
−
tan
y
x
−
y
=
f
′
(
c
)
=
g
(
c
)
=
1
cos
2
(
c
)
⟹
1
cos
2
(
y
)
≤
tan
x
−
tan
y
x
−
y
≤
1
cos
2
(
x
)
⟹
x
−
y
cos
2
(
y
)
+
tan
(
y
)
≤
tan
x
≤
x
−
y
cos
2
(
x
)
+
tan
y
Exercise
Prove:
∀
0
<
a
<
b
:
b
−
a
b
<
ln
(
b
a
)
<
b
−
a
a
Proof:
ln
(
b
a
)
=
ln
(
b
)
−
ln
(
a
)
b
≠
a
b
−
a
b
<
ln
(
b
a
)
<
b
−
a
a
⟺
1
b
<
ln
b
−
ln
a
b
−
a
<
1
a
Let
f
(
t
)
=
ln
t
ln
t
is differentiable on
(
0
,
∞
)
⊇
[
a
,
b
]
By the mean value theorem:
∃
c
∈
(
a
,
b
)
:
f
′
(
c
)
=
ln
b
−
ln
a
b
−
a
Let
g
(
t
)
=
f
′
(
t
)
=
1
t
1
t
is monotonically decreasing on
(
0
,
∞
)
⊇
[
a
,
b
]
⟹
∀
d
∈
(
a
,
b
)
:
1
b
<
1
d
<
1
a
∃
c
∈
(
a
,
b
)
:
ln
b
−
ln
a
b
−
a
=
f
′
(
c
)
=
g
(
c
)
=
1
c
⟹
1
b
<
ln
b
−
ln
a
b
−
a
<
1
a
⟹
b
−
a
b
<
ln
(
b
a
)
<
b
−
a
a
Cauchy's theorem
Let
f
,
g
be continuous on
[
a
,
b
]
and differentiable on
(
a
,
b
)
Let
∀
x
∈
(
a
,
b
)
:
g
′
(
x
)
≠
0
Then
∃
c
∈
(
a
,
b
)
:
f
′
(
c
)
g
′
(
c
)
=
f
(
b
)
−
f
(
a
)
g
(
b
)
−
g
(
a
)
Exercise
Let
0
<
x
<
1
Prove:
ln
(
x
2
+
1
)
tan
x
<
2
x
x
2
+
1
Proof:
ln
(
x
2
+
1
)
tan
x
=
ln
(
x
2
+
1
)
−
ln
(
0
2
+
1
)
tan
x
−
tan
0
Let
f
(
t
)
=
ln
(
t
2
+
1
)
Let
g
(
t
)
=
tan
t
f
′
(
t
)
=
2
t
t
2
+
1
∀
t
∈
(
0
,
1
)
:
g
′
(
t
)
=
1
cos
2
(
t
)
≠
0
⟹
By Cauchy’s theorem:
∃
c
∈
(
0
,
x
)
:
f
′
(
c
)
g
′
(
c
)
=
ln
(
x
2
+
1
)
−
ln
(
0
2
+
1
)
tan
x
−
tan
0
f
′
(
c
)
g
′
(
c
)
=
2
c
c
2
+
1
⋅
cos
2
(
c
)
∀
c
∈
(
0
,
x
)
:
cos
2
(
c
)
≤
1
⟹
2
c
c
2
+
1
⋅
cos
2
(
c
)
≤
2
c
c
2
+
1
Let
h
(
t
)
=
2
t
t
2
+
1
h
′
(
t
)
=
2
(
t
2
+
1
)
−
4
t
2
(
t
2
+
1
)
2
=
2
−
2
t
2
(
t
2
+
1
)
2
t
<
1
⟹
t
2
<
1
⟹
2
−
2
t
2
>
0
⟹
h
′
(
t
)
>
0
⟹
h
(
t
)
is monotonically increasing
o
n
(
0
,
1
)
⟹
∀
d
∈
(
0
,
x
)
:
0
<
2
d
d
2
+
1
<
2
x
x
2
+
1
∃
c
∈
(
0
,
x
)
:
ln
(
x
2
+
1
)
−
ln
(
0
2
+
1
)
tan
x
−
tan
0
=
f
′
(
c
)
g
′
(
c
)
=
2
c
c
2
+
1
<
2
x
x
2
+
1
⟹
ln
(
x
2
+
1
)
tan
x
<
2
x
x
2
+
1
lim
x
→
1
−
(
2
−
x
)
tan
(
π
2
x
)
=
lim
x
→
1
−
e
tan
(
π
2
x
)
ln
(
2
−
x
)
lim
x
→
1
−
tan
(
π
2
x
)
ln
(
2
−
x
)
=
lim
x
→
1
−
ln
(
2
−
x
)
(
tan
(
π
2
x
)
)
−
1
=
L
lim
x
→
1
−
−
1
2
−
x
−
π
2
sin
2
(
π
2
x
)
=
2
π
⟹
lim
x
→
1
−
(
2
−
x
)
tan
(
π
2
x
)
=
e
2
/
π