Infi-1 3

Infi-1 3

Sequence limit

Number L is a limit of sequence an(an approaches L) if and only if:ε>0nε:n>nε:|anL|<εThe limit notation is as following:anL or limnan=L

Exercise

Prove: limn14n=0|14n0|=14n<14nεnε=14ε|14n0|<14nε=1414ε=εε>0nε=14ε:n>nε:|14n0|<εlimn14n=0

Exercise

Prove: limnn2+1n2=1|n2+1n21|=|n2+1n2n2|=1n2<1nε2nε=1ε|n2+1n21|<1nε2=11ε2=εε>0nε=1ε:n>nε:|n2+1n21|<εlimnn2+1n2=1

Exercise

Prove: limn2n1n=2|2n1n2|=|2n12nn|=|1n|=1n<1nεnε=1ε+1|2n1n2|<1nε=11ε+1<11ε11ε=εε>0nε=1ε+1:n>nε:|2n1n2|<εlimn2n1n=2

Exercise

Prove: limn1n+7=0|1n+70|=1n+7<1nε+7nε=1ε7+10|1n+70|<1nε+7=11ε7+1711ε+10<11ε=εε>0nε=1ε7+10:n>nε:|1n+70|<εlimn1n+7=0

Exercise

Prove: limnn213n2+n+1=13|n213n2+n+113|=|3n23(3n2+n+1)9n2+3n+3|=|n49n2+3n+3|==n+49n2+3n+3n+4n9n2+3n+3<5n9n2=59n<55n<1nεnε=1ε|n213n2+n+113|<1nε=11ε11ε=εε>0nε=1ε:n>nε:|n213n2+n+113|<εlimnn213n2+n+1=13

Exercise

Prove: limnan=1nε:n>nε:an>12limnan=1ε>0:nε:n>nε:|an1|<εLet ε=12nε:n>nε:|an1|<12nε:n>nε:12<an<32

Exercise

Prove: limnan=L>0nε:n>nε:an<1110Llimnan=Lε>0:nε:n>nε:|anL|<εLet ε=L10nε:n>nε:|anL|<L10nε:n>nε:910L<an<1110L