Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-1 3
Infi-1 3
Sequence limit
Number
L
is a limit of sequence
a
n
(
a
n
approaches
L
) if and only if:
∀
ε
>
0
∃
n
ε
:
∀
n
>
n
ε
:
|
a
n
−
L
|
<
ε
The limit notation is as following:
a
n
→
L
or
lim
n
→
∞
a
n
=
L
Exercise
Prove:
lim
n
→
∞
1
4
n
=
0
|
1
4
n
−
0
|
=
1
4
n
<
1
4
n
ε
n
ε
=
1
4
ε
|
1
4
n
−
0
|
<
1
4
n
ε
=
1
4
1
4
ε
=
ε
⟹
∀
ε
>
0
∃
n
ε
=
1
4
ε
:
∀
n
>
n
ε
:
|
1
4
n
−
0
|
<
ε
⟹
lim
n
→
∞
1
4
n
=
0
Exercise
Prove:
lim
n
→
∞
n
2
+
1
n
2
=
1
|
n
2
+
1
n
2
−
1
|
=
|
n
2
+
1
−
n
2
n
2
|
=
1
n
2
<
1
n
ε
2
n
ε
=
1
ε
|
n
2
+
1
n
2
−
1
|
<
1
n
ε
2
=
1
1
ε
2
=
ε
⟹
∀
ε
>
0
∃
n
ε
=
1
ε
:
∀
n
>
n
ε
:
|
n
2
+
1
n
2
−
1
|
<
ε
⟹
lim
n
→
∞
n
2
+
1
n
2
=
1
Exercise
Prove:
lim
n
→
∞
2
n
−
1
n
=
2
|
2
n
−
1
n
−
2
|
=
|
2
n
−
1
−
2
n
n
|
=
|
−
1
n
|
=
1
n
<
1
n
ε
n
ε
=
⌈
1
ε
⌉
+
1
|
2
n
−
1
n
−
2
|
<
1
n
ε
=
1
⌈
1
ε
⌉
+
1
<
1
⌈
1
ε
⌉
≤
1
1
ε
=
ε
⟹
∀
ε
>
0
∃
n
ε
=
⌈
1
ε
⌉
+
1
:
∀
n
>
n
ε
:
|
2
n
−
1
n
−
2
|
<
ε
⟹
lim
n
→
∞
2
n
−
1
n
=
2
Exercise
Prove:
lim
n
→
∞
1
n
+
7
=
0
|
1
n
+
7
−
0
|
=
1
n
+
7
<
1
n
ε
+
7
n
ε
=
⌈
1
ε
−
7
⌉
+
10
|
1
n
+
7
−
0
|
<
1
n
ε
+
7
=
1
⌈
1
ε
−
7
⌉
+
17
≤
1
1
ε
+
10
<
1
1
ε
=
ε
⟹
∀
ε
>
0
∃
n
ε
=
⌈
1
ε
−
7
⌉
+
10
:
∀
n
>
n
ε
:
|
1
n
+
7
−
0
|
<
ε
⟹
lim
n
→
∞
1
n
+
7
=
0
Exercise
Prove:
lim
n
→
∞
n
2
−
1
3
n
2
+
n
+
1
=
1
3
|
n
2
−
1
3
n
2
+
n
+
1
−
1
3
|
=
|
3
n
2
−
3
−
(
3
n
2
+
n
+
1
)
9
n
2
+
3
n
+
3
|
=
|
−
n
−
4
9
n
2
+
3
n
+
3
|
=
=
n
+
4
9
n
2
+
3
n
+
3
≤
n
+
4
n
9
n
2
+
3
n
+
3
<
5
n
9
n
2
=
5
9
n
<
5
5
n
<
1
n
ε
n
ε
=
⌈
1
ε
⌉
|
n
2
−
1
3
n
2
+
n
+
1
−
1
3
|
<
1
n
ε
=
1
⌈
1
ε
⌉
≤
1
1
ε
=
ε
⟹
∀
ε
>
0
∃
n
ε
=
⌈
1
ε
⌉
:
∀
n
>
n
ε
:
|
n
2
−
1
3
n
2
+
n
+
1
−
1
3
|
<
ε
⟹
lim
n
→
∞
n
2
−
1
3
n
2
+
n
+
1
=
1
3
Exercise
Prove:
lim
n
→
∞
a
n
=
1
⟹
∃
n
ε
:
∀
n
>
n
ε
:
∃
a
n
>
1
2
lim
n
→
∞
a
n
=
1
⟹
∀
ε
>
0
:
∃
n
ε
:
∀
n
>
n
ε
:
|
a
n
−
1
|
<
ε
Let
ε
=
1
2
∃
n
ε
:
∀
n
>
n
ε
:
|
a
n
−
1
|
<
1
2
⟹
∃
n
ε
:
∀
n
>
n
ε
:
1
2
<
a
n
<
3
2
Exercise
Prove:
lim
n
→
∞
a
n
=
L
>
0
⟹
∃
n
ε
:
∀
n
>
n
ε
:
∃
a
n
<
11
10
L
lim
n
→
∞
a
n
=
L
⟹
∀
ε
>
0
:
∃
n
ε
:
∀
n
>
n
ε
:
|
a
n
−
L
|
<
ε
Let
ε
=
L
10
∃
n
ε
:
∀
n
>
n
ε
:
|
a
n
−
L
|
<
L
10
⟹
∃
n
ε
:
∀
n
>
n
ε
:
9
10
L
<
a
n
<
11
10
L