Infi-1 4

Infi-1 4

Exercise

limnnn2+n9=0|nn2+n90|=n>N3nn2+n9<n>N9nn2=1n<1NN=max(9,1ε)|nn2+n90|<1NN1ε11ε=εε>0N=max(9,1ε):n>N:|nn2+n90|<ε

Exercise

Prove: limn(1)nIf the finite limit exists: ε>0N:n>N:|(1)nL|<εNegation: ε>0:Nn>N:|(1)nL|εDoes such ε exist?Yes, for example: ε=12If L0:Nn=2N+1>N:1+L12If L<0:Nn=2N+2>N:1L12sup((1)n)=1limn(1)ninf((1)n)=1limn(1)nTherefore, limn(1)n

Exercise

limnan=L<1Prove: 0<q<1:N:n>N:an<qLet L<0,ε=12>0N:n>N:|anL|<12N:n>N:an<L+12<L<012=q<10<q=12<1:N:n>N:an<qLet L0,ε=1L2>L<10N:n>N:|anL|<1L2L1L2<an<L+1L2Let q=L+1L2=L+12<1L2<(1L)1N:n>N:L12<an<q<1L0q=L+1212>00<q=L+12<1:N:n>N:an<q

Exercise

Prove or disprove: limnan+bn=Lan,bn convergesDisproof: an=(1)nlimnanbn=(1)nlimnbnan+bn=(1)n(1)n=0limnan+bn=0Prove or disprove: limnan+bn=L,an divergesbn divergesProof: Let limnbn=Lblimnan=limnan+bnbn=limnan+bnlimnbn=LLblimnan=LLb=LaBut an divergesContradiction!bn diverges

Exercise

limnn(n2+1n)=limnn(n2+1n)n2+1+nn2+1+n==limnnn2+1n2n2+1+n=nn2+1+n=limnnn(1+1n2+1)==limn11+1n2+1limn1n2=0limn1+1n2=1limn11+1=12

Exercise

Prove or disprove: limnanbn=Llimnan,bn convergeDisproof: an=bn=(1)nlimnanbn=(1)2n=1But an,bn divergeProve or disprove: limnanbn=L,an divergesbn divergesDisproof: an=(1)n,bn=0limnanbn=(1)n0=0an diverges, but bn convergesProve or disprove: limnanbn=L,limnbn0,an divergesbn divergesProof: Let limnbn=Lblimnan=limnanbnbn=limnanbnlimnbn=Llblimnan=LLb=LaBut an divergesContradiction!bn diverges

Exercise

limnn36n2+5n+13n3+2n21=limnn3(16n+5n2+1n3)n3(3+2n1n3)==limn16n0+5n20+1n303+2n01n30=13