Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-1 4
Infi-1 4
Exercise
lim
n
→
∞
n
n
2
+
n
−
9
=
0
|
n
n
2
+
n
−
9
−
0
|
=
n
>
N
≥
3
n
n
2
+
n
−
9
<
n
>
N
≥
9
n
n
2
=
1
n
<
1
N
N
=
m
a
x
(
9
,
1
ε
)
|
n
n
2
+
n
−
9
−
0
|
<
1
N
≤
N
≥
1
ε
1
1
ε
=
ε
∀
ε
>
0
∃
N
=
m
a
x
(
9
,
1
ε
)
:
∀
n
>
N
:
|
n
n
2
+
n
−
9
−
0
|
<
ε
Exercise
Prove:
∄
lim
n
→
∞
(
−
1
)
n
If the finite limit exists:
∀
ε
>
0
∃
N
:
∀
n
>
N
:
|
(
−
1
)
n
−
L
|
<
ε
Negation:
∃
ε
>
0
:
∀
N
∃
n
>
N
:
|
(
−
1
)
n
−
L
|
≥
ε
Does such
ε
exist?
Yes, for example:
ε
=
1
2
If
L
≥
0
:
∀
N
∃
n
=
⌈
2
N
⌉
+
1
>
N
:
1
+
L
≥
1
2
If
L
<
0
:
∀
N
∃
n
=
⌈
2
N
⌉
+
2
>
N
:
1
−
L
≥
1
2
s
u
p
(
(
−
1
)
n
)
=
1
⟹
lim
n
→
∞
(
−
1
)
n
≠
∞
i
n
f
(
(
−
1
)
n
)
=
−
1
⟹
lim
n
→
∞
(
−
1
)
n
≠
−
∞
Therefore,
∄
lim
n
→
∞
(
−
1
)
n
Exercise
lim
n
→
∞
a
n
=
L
<
1
Prove:
∃
0
<
q
<
1
:
∃
N
:
∀
n
>
N
:
a
n
<
q
Let
L
<
0
,
ε
=
1
2
>
0
∃
N
:
∀
n
>
N
:
|
a
n
−
L
|
<
1
2
∃
N
:
∀
n
>
N
:
a
n
<
L
+
1
2
<
L
<
0
1
2
=
q
<
1
⟹
∃
0
<
q
=
1
2
<
1
:
∃
N
:
∀
n
>
N
:
a
n
<
q
Let
L
≥
0
,
ε
=
1
−
L
2
>
L
<
1
0
∃
N
:
∀
n
>
N
:
|
a
n
−
L
|
<
1
−
L
2
L
−
1
−
L
2
<
a
n
<
L
+
1
−
L
2
Let
q
=
L
+
1
−
L
2
=
L
+
1
2
<
1
−
L
2
<
(
1
−
L
)
1
∃
N
:
∀
n
>
N
:
L
−
1
2
<
a
n
<
q
<
1
L
≥
0
⟹
q
=
L
+
1
2
≥
1
2
>
0
⟹
∃
0
<
q
=
L
+
1
2
<
1
:
∃
N
:
∀
n
>
N
:
a
n
<
q
Exercise
Prove or disprove:
lim
n
→
∞
a
n
+
b
n
=
L
⟹
a
n
,
b
n
converges
Disproof:
a
n
=
(
−
1
)
n
⟹
∄
lim
n
→
∞
a
n
b
n
=
−
(
−
1
)
n
⟹
∄
lim
n
→
∞
b
n
a
n
+
b
n
=
(
−
1
)
n
−
(
−
1
)
n
=
0
⟹
lim
n
→
∞
a
n
+
b
n
=
0
Prove or disprove:
lim
n
→
∞
a
n
+
b
n
=
L
,
a
n
diverges
⟹
b
n
diverges
Proof:
Let
lim
n
→
∞
b
n
=
L
b
⟹
lim
n
→
∞
a
n
=
lim
n
→
∞
a
n
+
b
n
−
b
n
=
lim
n
→
∞
a
n
+
b
n
−
lim
n
→
∞
b
n
=
L
−
L
b
⟹
lim
n
→
∞
a
n
=
L
−
L
b
=
L
a
But
a
n
diverges
⟹
Contradiction!
⟹
b
n
diverges
Exercise
lim
n
→
∞
n
(
n
2
+
1
−
n
)
=
lim
n
→
∞
n
(
n
2
+
1
−
n
)
⋅
n
2
+
1
+
n
n
2
+
1
+
n
=
=
lim
n
→
∞
n
n
2
+
1
−
n
2
n
2
+
1
+
n
=
n
n
2
+
1
+
n
=
lim
n
→
∞
n
n
(
1
+
1
n
2
+
1
)
=
=
lim
n
→
∞
1
1
+
1
n
2
+
1
lim
n
→
∞
1
n
2
=
0
⟹
lim
n
→
∞
1
+
1
n
2
=
1
⟹
lim
n
→
∞
1
1
+
1
=
1
2
Exercise
Prove or disprove:
lim
n
→
∞
a
n
b
n
=
L
⟹
lim
n
→
∞
a
n
,
b
n
converge
Disproof:
a
n
=
b
n
=
(
−
1
)
n
lim
n
→
∞
a
n
b
n
=
(
−
1
)
2
n
=
1
But
a
n
,
b
n
diverge
Prove or disprove:
lim
n
→
∞
a
n
b
n
=
L
,
a
n
diverges
⟹
b
n
diverges
Disproof:
a
n
=
(
−
1
)
n
,
b
n
=
0
lim
n
→
∞
a
n
b
n
=
(
−
1
)
n
⋅
0
=
0
a
n
diverges, but
b
n
converges
Prove or disprove:
lim
n
→
∞
a
n
b
n
=
L
,
lim
n
→
∞
b
n
≠
0
,
a
n
diverges
⟹
b
n
diverges
Proof:
Let
lim
n
→
∞
b
n
=
L
b
⟹
lim
n
→
∞
a
n
=
lim
n
→
∞
a
n
b
n
b
n
=
lim
n
→
∞
a
n
b
n
lim
n
→
∞
b
n
=
L
l
b
⟹
lim
n
→
∞
a
n
=
L
L
b
=
L
a
But
a
n
diverges
⟹
Contradiction!
⟹
b
n
diverges
Exercise
lim
n
→
∞
n
3
−
6
n
2
+
5
n
+
1
3
n
3
+
2
n
2
−
1
=
lim
n
→
∞
n
3
(
1
−
6
n
+
5
n
2
+
1
n
3
)
n
3
(
3
+
2
n
−
1
n
3
)
=
=
lim
n
→
∞
1
−
6
n
→
0
+
5
n
2
→
0
+
1
n
3
→
0
3
+
2
n
→
0
−
1
n
3
→
0
=
1
3