Infi-1 5

Infi-1 5

Infinite sequence limit (sequence diverges)

limnan=MN:n>N:an>Mlimnan=limnan=mN:n>N:an<m

Exercise

Prove: limnn26=Proof:Let Mn26>n>NN26Let N=26M2n26>26M226=M2=MM:N=26M2:n>N,nN:n26>Mlimnn26=

Exercise

Prove or disprove: limnan=0limn1an=±Disproof:limn(1)n1n=0an=(1)n1nlimn1an=limn1(1)n1n=limn(1)nnlimn(1)nnlimn1an

Exercise

limn(n+1)(1nn+1)=limn(n+1)(1nn+1)(1+nn+1)1+nn+1==limn(n+1)(1nn+1)1+nn+1=limn(n+1)(n+1nn+1)1+nn+1==limn11+nn+1nn+1=11+1n1=12

Exercise

limnn2+nnn2nn=limnn2+nnn2nnn2+n+nn2+n+nn2n+nn2n+n==limnn2+nn2n2nn2n2n+nn2+n+n=limnn2n+nn2+n+n==limnn(11n+1)n(1+1n+1)=limn11n1+11+1n1+1=limn22=1

Exercise

n+131a3b3=(ab)(a2+ab+b2)n+131=(n+131)((n+1)23+n+1+1)(n+1)23+n+1+1==n(n+1)23+n+1+1

"Sandwich" theorem (Squeeze theorem)

N:n>N,nN:anbncnanL,cnLbnL

Exercise

limnsin2(n2)n3+1=01n3+10sin2(n2)n3+11n3+10sin2(n2)n3+10

Exercise

limn3n+2n+4nn4nn3n+2n+4nn4n+4n+4nn443n+2n+4nn3n144limn3n+2n+4nn=4

Exercise

limn(1n2+1+1n2+2++1n2+n)nn2+nannn2+1nn1+1nannn1+1n211+1n111=1an11+1n2111=1limn(1n2+1+1n2+2++1n2+n)=1
nN:an+1an0Monotonic non-descendingnN:an+1an1Monotonic non-descendingnN:an+1an0Monotonic non-ascendingnN:0<an+1an1Monotonic non-descending

Exercise

an=1n+1n+1++13nProve: limnan=LProof: an+1an=13n+3+13n+2+13n+11n<33n1n=0anmonotonically descending232n+13n1n+1n+1++13nan is lower-boundedlimnan=L23
nnn2+n=n2n2+n=11+1n