Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-1 5
Infi-1 5
Infinite sequence limit (sequence diverges)
lim
n
→
∞
a
n
=
∞
⟺
∀
M
∃
N
:
∀
n
>
N
:
a
n
>
M
lim
n
→
∞
a
n
=
−
∞
⟺
lim
n
→
∞
−
a
n
=
∞
⟺
∀
m
∃
N
:
∀
n
>
N
:
a
n
<
m
Exercise
Prove:
lim
n
→
∞
n
26
=
∞
Proof:
Let
M
n
26
>
n
>
N
N
26
Let
N
=
26
M
2
n
26
>
26
M
2
26
=
M
2
=
M
⟹
∀
M
:
∃
N
=
26
M
2
:
∀
n
>
N
,
n
∈
N
:
n
26
>
M
⟺
lim
n
→
∞
n
26
=
∞
Exercise
Prove or disprove:
lim
n
→
∞
a
n
=
0
⟹
lim
n
→
∞
1
a
n
=
±
∞
Disproof:
lim
n
→
∞
(
−
1
)
n
1
n
=
0
a
n
=
(
−
1
)
n
1
n
lim
n
→
∞
1
a
n
=
lim
n
→
∞
1
(
−
1
)
n
1
n
=
lim
n
→
∞
(
−
1
)
n
⋅
n
∄
lim
n
→
∞
(
−
1
)
n
⋅
n
⟹
∄
lim
n
→
∞
1
a
n
Exercise
lim
n
→
∞
(
n
+
1
)
(
1
−
n
n
+
1
)
=
lim
n
→
∞
(
n
+
1
)
(
1
−
n
n
+
1
)
(
1
+
n
n
+
1
)
1
+
n
n
+
1
=
=
lim
n
→
∞
(
n
+
1
)
(
1
−
n
n
+
1
)
1
+
n
n
+
1
=
lim
n
→
∞
(
n
+
1
)
(
n
+
1
−
n
n
+
1
)
1
+
n
n
+
1
=
=
lim
n
→
∞
1
1
+
n
n
+
1
⏟
n
n
+
1
=
1
1
+
1
n
→
1
=
1
2
Exercise
lim
n
→
∞
n
2
+
n
−
n
n
2
−
n
−
n
=
lim
n
→
∞
n
2
+
n
−
n
n
2
−
n
−
n
⋅
n
2
+
n
+
n
n
2
+
n
+
n
⋅
n
2
−
n
+
n
n
2
−
n
+
n
=
=
lim
n
→
∞
n
2
+
n
−
n
2
n
2
−
n
−
n
2
⋅
n
2
−
n
+
n
n
2
+
n
+
n
=
lim
n
→
∞
−
n
2
−
n
+
n
n
2
+
n
+
n
=
=
lim
n
→
∞
−
n
(
1
−
1
n
+
1
)
n
(
1
+
1
n
+
1
)
=
lim
n
→
∞
−
1
−
1
n
⏞
→
1
+
1
1
+
1
n
⏟
→
1
+
1
=
lim
n
→
∞
−
2
2
=
−
1
Exercise
n
+
1
3
−
1
a
3
−
b
3
=
(
a
−
b
)
(
a
2
+
a
b
+
b
2
)
⟹
n
+
1
3
−
1
=
(
n
+
1
3
−
1
)
(
(
n
+
1
)
2
3
+
n
+
1
+
1
)
(
n
+
1
)
2
3
+
n
+
1
+
1
=
=
n
(
n
+
1
)
2
3
+
n
+
1
+
1
"Sandwich" theorem (Squeeze theorem)
∃
N
:
∀
n
>
N
,
n
∈
N
:
a
n
≤
b
n
≤
c
n
a
n
→
L
,
c
n
→
L
⟹
b
n
→
L
Exercise
lim
n
→
∞
sin
2
(
n
2
)
n
3
+
1
=
0
−
1
n
3
+
1
⏟
→
0
≤
sin
2
(
n
2
)
n
3
+
1
≤
1
n
3
+
1
⏟
→
0
⟹
sin
2
(
n
2
)
n
3
+
1
→
0
Exercise
lim
n
→
∞
3
n
+
2
n
+
4
n
n
4
n
n
≤
3
n
+
2
n
+
4
n
n
≤
4
n
+
4
n
+
4
n
n
4
⏟
→
4
≤
3
n
+
2
n
+
4
n
n
≤
3
n
⏟
→
1
⋅
4
⏟
→
4
⟹
lim
n
→
∞
3
n
+
2
n
+
4
n
n
=
4
Exercise
lim
n
→
∞
(
1
n
2
+
1
+
1
n
2
+
2
+
⋯
+
1
n
2
+
n
)
n
n
2
+
n
≤
a
n
≤
n
n
2
+
1
n
n
1
+
1
n
≤
a
n
≤
n
n
1
+
1
n
2
1
1
+
1
n
⏟
→
1
⏟
→
1
1
=
1
≤
a
n
≤
1
1
+
1
n
2
⏟
→
1
⏟
→
1
1
=
1
⟹
lim
n
→
∞
(
1
n
2
+
1
+
1
n
2
+
2
+
⋯
+
1
n
2
+
n
)
=
1
∀
n
∈
N
:
a
n
+
1
−
a
n
≥
0
−
Monotonic non-descending
∀
n
∈
N
:
a
n
+
1
a
n
≥
1
−
Monotonic non-descending
∀
n
∈
N
:
a
n
+
1
−
a
n
≤
0
−
Monotonic non-ascending
∀
n
∈
N
:
0
<
a
n
+
1
a
n
≤
1
−
Monotonic non-descending
Exercise
a
n
=
1
n
+
1
n
+
1
+
⋯
+
1
3
n
Prove:
lim
n
→
∞
a
n
=
L
Proof:
a
n
+
1
−
a
n
=
1
3
n
+
3
+
1
3
n
+
2
+
1
3
n
+
1
−
1
n
<
3
3
n
−
1
n
=
0
⟹
a
n
−
monotonically descending
2
3
≤
2
n
+
1
3
n
≤
1
n
+
1
n
+
1
+
⋯
+
1
3
n
⟹
a
n
is lower-bounded
⟹
lim
n
→
∞
a
n
=
L
≥
2
3
n
⋅
n
n
2
+
n
=
n
2
n
2
+
n
=
1
1
+
1
n