Infi-1 6

Infi-1 6

an>0limnan+1an=Llimnann=L

Exercise

limnnn=?an=nlimnnn=nn>0limnn+1n=limn1+1n0=1

Exercise

Prove or disprove: limnan=an is monotonically non-descendingDisproof:Let an=n+(1)nan+1an=1+(1)n+1(1)n=12(1)n0limnan=Disproved

Exercise

Prove or disprove: limnan=0limn1an=Proved in seminar Infi-1 5

Exercise

Prove or disprove: limnanbn=0an is bounded or bn is boundedDisproof:an={0n=2knotherwise,bn={0n=2k+1notherwiseanbn=0

Exercise

x>0an=6n+x2n23n+2Prove or disprove: limnan>2Proof:6n+x2n213n+2<6n+x2n23n+2<6n+x2n23n+22+x36+x21n20x3+2n0<an<6+x3+2n02+x3limnan=2+x3>0limnan>2

Exercise

Prove or disprove: 1.an:limnan=limnan+1an=02.an:limnan=limnan+1an=43.an:limnan=limnan+1an=4.an:limnan=limnan+1an1.Disproof:Let limnan+1an=0N:n>N:an+1an<1an is monotonically descending after Nlimnan2.Proof:an=4nan+1an=443.Proof:an=n!an+1an=n+14.Proof:an={nn=2kn2otherwiseannanan+1an={1n+1n2n=2kn+2+1notherwiselimnan+1an

Exercise

{a1=5an+1=an6+an3+2anBase case.a1=53Induction step. Let an3an+1=an6+an3+2anan6+33+2an=9an3+2an9anan+2an=3an+13By induction: an3an+1an=an3an3+2an<0an is monotonically descendingan convergesLet limnan=LL=limnan+1=limnan6+an3+2an=L6+L3+2L[L=0L=3an3limnan0limnan=3