Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-1 6
Infi-1 6
a
n
>
0
lim
n
→
∞
a
n
+
1
a
n
=
L
⟹
lim
n
→
∞
a
n
n
=
L
Exercise
lim
n
→
∞
n
n
=
?
a
n
=
n
lim
n
→
∞
n
n
=
n
n
>
0
lim
n
→
∞
n
+
1
n
=
lim
n
→
∞
1
+
1
n
⏟
→
0
=
1
Exercise
Prove or disprove:
lim
n
→
∞
a
n
=
∞
⟹
a
n
is monotonically non-descending
Disproof:
Let
a
n
=
n
+
(
−
1
)
n
a
n
+
1
−
a
n
=
1
+
(
−
1
)
n
+
1
−
(
−
1
)
n
=
1
−
2
(
−
1
)
n
≮
0
lim
n
→
∞
a
n
=
∞
⟹
Disproved
Exercise
Prove or disprove:
lim
n
→
∞
a
n
=
0
⟹
lim
n
→
∞
1
a
n
=
∞
Proved in seminar Infi-1 5
Exercise
Prove or disprove:
lim
n
→
∞
a
n
b
n
=
0
⟹
a
n
is bounded or
b
n
is bounded
Disproof:
a
n
=
{
0
n
=
2
k
n
otherwise
,
b
n
=
{
0
n
=
2
k
+
1
n
otherwise
a
n
b
n
=
0
Exercise
x
>
0
a
n
=
6
n
+
⌊
x
2
n
2
⌋
3
n
+
2
Prove or disprove:
lim
n
→
∞
a
n
>
2
Proof:
6
n
+
x
2
n
2
−
1
3
n
+
2
<
6
n
+
⌊
x
2
n
2
⌋
3
n
+
2
<
6
n
+
x
2
n
2
3
n
+
2
2
+
x
3
←
6
+
x
2
−
1
n
2
⏞
→
0
⏞
→
x
3
+
2
n
⏟
→
0
<
a
n
<
6
+
x
3
+
2
n
⏟
→
0
→
2
+
x
3
⟹
lim
n
→
∞
a
n
=
2
+
x
3
⏟
>
0
⟹
lim
n
→
∞
a
n
>
2
Exercise
Prove or disprove:
1.
∃
a
n
:
lim
n
→
∞
a
n
=
∞
∧
lim
n
→
∞
a
n
+
1
a
n
=
0
2.
∃
a
n
:
lim
n
→
∞
a
n
=
∞
∧
lim
n
→
∞
a
n
+
1
a
n
=
4
3.
∃
a
n
:
lim
n
→
∞
a
n
=
∞
∧
lim
n
→
∞
a
n
+
1
a
n
=
∞
4.
∃
a
n
:
lim
n
→
∞
a
n
=
∞
∧
∄
lim
n
→
∞
a
n
+
1
a
n
1.
Disproof:
Let
lim
n
→
∞
a
n
+
1
a
n
=
0
⟹
∃
N
:
∀
n
>
N
:
a
n
+
1
a
n
<
1
⟹
a
n
is monotonically descending after
N
⟹
lim
n
→
∞
a
n
≠
∞
2.
Proof:
a
n
=
4
n
⟹
a
n
+
1
a
n
=
4
→
4
3.
Proof:
a
n
=
n
!
⟹
a
n
+
1
a
n
=
n
+
1
→
∞
4.
Proof:
a
n
=
{
n
n
=
2
k
n
2
otherwise
a
n
≥
n
→
∞
⟹
a
n
→
∞
a
n
+
1
a
n
=
{
1
n
+
1
n
2
n
=
2
k
n
+
2
+
1
n
otherwise
⟹
∄
lim
n
→
∞
a
n
+
1
a
n
Exercise
{
a
1
=
5
a
n
+
1
=
a
n
⋅
6
+
a
n
3
+
2
a
n
Base case.
a
1
=
5
≥
3
Induction step. Let
a
n
≥
3
a
n
+
1
=
a
n
⋅
6
+
a
n
3
+
2
a
n
≥
a
n
⋅
6
+
3
3
+
2
a
n
=
9
a
n
3
+
2
a
n
≥
9
a
n
a
n
+
2
a
n
=
3
⟹
a
n
+
1
≥
3
By induction:
a
n
≥
3
a
n
+
1
−
a
n
=
a
n
3
−
a
n
3
+
2
a
n
<
0
⟹
a
n
is monotonically descending
⟹
a
n
converges
Let
lim
n
→
∞
a
n
=
L
L
=
lim
n
→
∞
a
n
+
1
=
lim
n
→
∞
a
n
⋅
6
+
a
n
3
+
2
a
n
=
L
⋅
6
+
L
3
+
2
L
⟹
[
L
=
0
L
=
3
a
n
≥
3
⟹
lim
n
→
∞
a
n
≠
0
⟹
lim
n
→
∞
a
n
=
3