Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-2 1
Primitive function and indefinite integral
Let
f
be a function
Let
F
be a differentiable function such that
F
′
=
f
(
d
F
d
x
=
f
)
F
is then called a primitive function of
f
Indefinite integral of
f
is a set of its primitive functions
It is denoted as
∫
f
(
x
)
d
x
=
F
+
C
Known integrals
n
≠
1
,
∫
x
n
d
x
=
x
n
+
1
n
+
1
+
C
∫
1
x
d
x
=
ln
|
x
|
+
C
∫
a
x
d
x
=
a
x
ln
(
a
)
+
c
∫
e
x
d
x
=
e
x
+
C
∫
cos
(
x
)
d
x
=
sin
(
x
)
+
C
∫
sin
(
x
)
d
x
=
−
cos
(
x
)
+
C
∫
1
1
+
x
2
d
x
=
arctan
(
x
)
+
C
∫
1
1
−
x
2
d
x
=
arcsin
(
x
)
+
C
∫
1
cos
2
(
x
)
d
x
=
tan
(
x
)
+
C
Linearity of integral
∫
(
a
f
+
g
)
(
x
)
d
x
=
a
∫
f
(
x
)
d
x
+
∫
g
(
x
)
d
x
Examples
∫
x
6
d
x
=
∫
x
1
/
6
d
x
=
6
7
x
7
6
+
C
∫
7
cos
2
(
x
)
+
2
sin
2
(
x
)
cos
2
(
x
)
d
x
=
∫
5
cos
2
(
x
)
cos
2
(
x
)
+
2
(
cos
2
(
x
)
+
sin
2
(
x
)
)
cos
2
(
x
)
d
x
=
=
∫
5
d
x
+
∫
2
cos
2
x
d
x
=
5
x
+
2
tan
(
x
)
+
C
Linear composition
∫
f
(
x
)
d
x
=
F
(
x
)
+
C
⟹
∫
f
(
a
x
+
b
)
d
x
=
1
a
F
(
a
x
+
b
)
+
C
Examples
∫
cos
(
3
x
+
5
)
d
x
=
1
3
sin
(
3
x
+
5
)
+
C
∫
e
3
x
d
x
=
1
3
e
3
x
+
C
Trigonometric equalities
sin
2
(
x
)
+
cos
2
(
x
)
=
1
sin
(
2
x
)
=
2
sin
(
x
)
cos
(
x
)
cos
(
2
x
)
=
2
cos
2
(
x
)
−
1
=
1
−
2
sin
2
(
x
)
sin
2
(
x
)
=
1
−
cos
(
2
x
)
2
cos
2
(
x
)
=
1
+
cos
(
2
x
)
2
sin
(
x
±
y
)
=
sin
(
x
)
cos
(
y
)
±
sin
(
y
)
cos
(
x
)
cos
(
x
±
y
)
=
cos
(
x
)
cos
(
y
)
∓
sin
(
x
)
sin
(
y
)
cos
(
x
)
cos
(
y
)
=
cos
(
x
−
y
)
+
cos
(
x
+
y
)
2
sin
(
x
)
sin
(
y
)
=
cos
(
x
−
y
)
−
cos
(
x
+
y
)
2
sin
(
x
)
cos
(
y
)
=
sin
(
x
+
y
)
+
sin
(
x
−
y
)
2
Examples
∫
sin
(
5
x
)
cos
(
2
x
)
d
x
=
1
2
∫
(
sin
(
7
x
)
+
sin
(
3
x
)
)
d
x
=
1
2
(
−
1
7
cos
(
7
x
)
−
1
3
cos
(
3
x
)
)
+
C
∫
sin
4
(
x
)
d
x
=
∫
(
sin
2
(
x
)
)
2
d
x
=
∫
(
1
−
cos
(
2
x
)
2
)
2
d
x
=
=
1
4
∫
(
1
−
2
cos
(
2
x
)
+
cos
2
(
2
x
)
)
d
x
=
1
4
∫
(
1
−
2
cos
(
2
x
)
+
1
2
+
cos
(
4
x
)
2
)
d
x
=
=
1
4
∫
(
3
2
−
2
cos
(
2
x
)
+
cos
(
4
x
)
2
)
d
x
=
1
4
(
3
x
2
−
sin
(
2
x
)
+
1
8
sin
(
4
x
)
)
+
C
Integration by parts
∫
f
(
x
)
g
′
(
x
)
d
x
=
f
(
x
)
g
(
x
)
−
∫
f
′
(
x
)
g
(
x
)
d
x
Examples
∫
x
4
ln
(
x
)
d
x
=
∫
ln
(
x
)
(
x
5
5
)
′
d
x
=
x
5
ln
(
x
)
5
−
∫
x
5
5
x
d
x
=
=
x
5
ln
(
x
)
5
+
x
5
25
+
C
LIATE
Order of functions to choose as
f
,
g
in integration by parts
The higher the place, the better choice it is for
f
and not
g
1.
Logarithmic
2.
Inverse trigonometric
3.
Algebraic
4.
Trigonometric
5.
Exponential
Examples
∫
cos
(
ln
x
)
d
x
=
x
cos
(
ln
x
)
+
∫
sin
(
ln
x
)
d
x
∫
sin
(
ln
x
)
d
x
=
x
sin
(
ln
x
)
−
∫
cos
(
ln
x
)
d
x
⟹
∫
cos
(
ln
x
)
d
x
=
x
cos
(
ln
x
)
+
x
sin
(
ln
x
)
−
∫
cos
(
ln
x
)
d
x
⟹
∫
cos
(
ln
x
)
d
x
=
x
cos
(
ln
x
)
+
x
sin
(
ln
x
)
2
+
C
⟹
∫
sin
(
ln
x
)
d
x
=
x
sin
(
ln
x
)
−
x
cos
(
ln
x
)
2
+
C
Variable substitution
(
f
(
g
(
x
)
)
)
′
=
f
′
(
g
(
x
)
)
g
′
(
x
)
⟹
∫
f
′
(
g
(
x
)
)
g
′
(
x
)
d
x
=
f
(
g
(
x
)
)
+
C
t
=
g
(
x
)
⟹
∫
f
′
(
t
)
g
′
(
x
)
d
x
=
f
(
t
)
+
C
=
∫
f
′
(
t
)
d
t
⟹
f
′
(
t
)
g
′
(
x
)
d
x
=
f
′
(
t
)
d
t
⟹
d
t
=
g
′
(
x
)
d
x
Examples
∫
2
x
1
+
x
2
d
x
t
=
1
+
x
2
⟹
d
t
=
(
1
+
x
2
)
′
d
x
=
2
x
d
x
⟹
d
x
=
d
t
2
x
⟹
∫
2
x
t
d
t
2
x
=
∫
1
t
d
t
=
ln
|
t
|
+
C
=
ln
|
1
+
x
2
|
+
C
∫
sin
4
(
x
)
cos
(
x
)
d
x
t
=
sin
(
x
)
⟹
d
t
=
cos
(
x
)
d
x
⟹
∫
t
4
d
t
=
t
5
5
+
C
=
sin
5
(
x
)
5
+
C
∫
arctan
(
x
)
d
x
=
x
arctan
(
x
)
−
∫
x
1
+
x
2
d
x
=
=
x
arctan
(
x
)
−
1
2
ln
|
1
+
x
2
|
+
C
∫
sin
m
(
x
)
cos
n
(
x
)
d
x
Choose function with even power
∫
cos
3
(
x
)
sin
2
(
x
)
d
x
t
=
sin
(
x
)
⟹
d
t
=
cos
(
x
)
d
x
⟹
∫
(
1
−
t
2
)
t
2
d
t
=
∫
(
t
2
−
t
4
)
d
t
=
t
3
3
−
t
5
5
+
C
=
sin
3
(
x
)
3
−
sin
5
(
x
)
5
+
C
∫
x
e
x
2
d
x
=
⏟
t
=
x
2
1
2
∫
e
t
d
t
=
e
x
2
2
+
C
∫
x
3
e
x
2
d
x
=
x
2
e
x
2
2
−
∫
x
e
x
2
d
x
=
x
2
e
x
2
2
−
e
x
2
2
+
C