Infi-2 1

Primitive function and indefinite integral

Let f be a functionLet F be a differentiable function such that F=f(dFdx=f)F is then called a primitive function of fIndefinite integral of f is a set of its primitive functionsIt is denoted as f(x)dx=F+C

Known integrals

n1,xndx=xn+1n+1+C1xdx=ln|x|+Caxdx=axln(a)+cexdx=ex+Ccos(x)dx=sin(x)+Csin(x)dx=cos(x)+C11+x2dx=arctan(x)+C11x2dx=arcsin(x)+C1cos2(x)dx=tan(x)+C

Linearity of integral

(af+g)(x)dx=af(x)dx+g(x)dx

Examples

x6dx=x1/6dx=67x76+C7cos2(x)+2sin2(x)cos2(x)dx=5cos2(x)cos2(x)+2(cos2(x)+sin2(x))cos2(x)dx==5dx+2cos2xdx=5x+2tan(x)+C

Linear composition

f(x)dx=F(x)+Cf(ax+b)dx=1aF(ax+b)+C

Examples

cos(3x+5)dx=13sin(3x+5)+Ce3xdx=13e3x+C

Trigonometric equalities

sin2(x)+cos2(x)=1sin(2x)=2sin(x)cos(x)cos(2x)=2cos2(x)1=12sin2(x)sin2(x)=1cos(2x)2cos2(x)=1+cos(2x)2sin(x±y)=sin(x)cos(y)±sin(y)cos(x)cos(x±y)=cos(x)cos(y)sin(x)sin(y)cos(x)cos(y)=cos(xy)+cos(x+y)2sin(x)sin(y)=cos(xy)cos(x+y)2sin(x)cos(y)=sin(x+y)+sin(xy)2

Examples

sin(5x)cos(2x)dx=12(sin(7x)+sin(3x))dx=12(17cos(7x)13cos(3x))+Csin4(x)dx=(sin2(x))2dx=(1cos(2x)2)2dx==14(12cos(2x)+cos2(2x))dx=14(12cos(2x)+12+cos(4x)2)dx==14(322cos(2x)+cos(4x)2)dx=14(3x2sin(2x)+18sin(4x))+C

Integration by parts

f(x)g(x)dx=f(x)g(x)f(x)g(x)dx

Examples

x4ln(x)dx=ln(x)(x55)dx=x5ln(x)5x55xdx==x5ln(x)5+x525+C

LIATE

Order of functions to choose as f,g in integration by partsThe higher the place, the better choice it is for f and not g1.Logarithmic2.Inverse trigonometric3.Algebraic4.Trigonometric5.Exponential

Examples

cos(lnx)dx=xcos(lnx)+sin(lnx)dxsin(lnx)dx=xsin(lnx)cos(lnx)dxcos(lnx)dx=xcos(lnx)+xsin(lnx)cos(lnx)dxcos(lnx)dx=xcos(lnx)+xsin(lnx)2+Csin(lnx)dx=xsin(lnx)xcos(lnx)2+C

Variable substitution

(f(g(x)))=f(g(x))g(x)f(g(x))g(x)dx=f(g(x))+Ct=g(x)f(t)g(x)dx=f(t)+C=f(t)dtf(t)g(x)dx=f(t)dtdt=g(x)dx

Examples

2x1+x2dxt=1+x2dt=(1+x2)dx=2xdxdx=dt2x2xtdt2x=1tdt=ln|t|+C=ln|1+x2|+Csin4(x)cos(x)dxt=sin(x)dt=cos(x)dxt4dt=t55+C=sin5(x)5+Carctan(x)dx=xarctan(x)x1+x2dx==xarctan(x)12ln|1+x2|+Csinm(x)cosn(x)dxChoose function with even powercos3(x)sin2(x)dxt=sin(x)dt=cos(x)dx(1t2)t2dt=(t2t4)dt=t33t55+C=sin3(x)3sin5(x)5+Cxex2dx=t=x212etdt=ex22+Cx3ex2dx=x2ex22xex2dx=x2ex22ex22+C