Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-2 2
∫
x
3
x
2
−
3
x
+
3
d
x
=
∫
(
x
+
3
)
d
x
+
3
∫
2
x
−
3
x
2
−
3
x
+
3
d
x
=
=
x
2
2
+
3
x
+
3
ln
|
x
2
−
3
x
+
3
|
+
C
∫
x
x
2
−
4
x
+
8
d
x
=
1
2
∫
2
x
−
4
x
2
−
4
x
+
8
d
x
+
1
2
∫
4
x
2
−
4
x
+
8
d
x
=
=
1
2
ln
|
x
2
−
4
x
+
8
|
+
2
∫
1
(
x
−
2
)
2
+
2
2
d
x
=
=
1
2
ln
|
x
2
−
4
x
+
8
|
+
arctan
(
x
−
2
2
)
+
C
∫
x
+
3
x
2
−
3
x
−
40
d
x
=
∫
x
+
3
(
x
+
5
)
(
x
−
8
)
d
x
=
=
∫
A
x
+
5
d
x
+
∫
B
x
−
8
d
x
=
{
A
+
B
=
1
−
8
A
+
5
B
=
3
⟹
{
A
=
2
13
B
=
11
13
⟹
∫
x
+
3
x
2
−
3
x
−
40
d
x
=
2
13
ln
|
x
+
5
|
+
11
13
ln
|
x
−
8
|
+
C
∫
x
3
−
2
x
4
−
x
d
x
=
∫
x
3
−
2
x
(
x
3
−
1
)
d
x
=
∫
x
3
−
2
x
(
x
−
1
)
(
x
2
+
x
+
1
)
d
x
1
x
(
x
−
1
)
(
x
2
+
x
+
1
)
=
A
x
+
B
x
−
1
+
C
x
+
D
x
2
+
x
+
1
x
3
−
2
=
A
(
x
3
−
1
)
+
B
(
x
3
+
x
2
+
x
)
+
C
x
3
−
C
x
2
+
D
x
2
−
D
x
⟹
{
A
+
B
+
C
=
1
B
−
C
+
D
=
0
B
−
D
=
0
A
=
2
⟹
{
A
=
2
B
=
−
1
3
C
=
−
2
3
D
=
−
1
3
⟹
∫
x
3
−
2
x
4
−
x
d
x
=
2
∫
1
x
d
x
−
1
3
∫
1
x
−
1
d
x
−
1
3
∫
2
x
+
1
x
2
+
x
+
1
d
x
=
=
2
ln
|
x
|
−
1
3
ln
|
x
−
1
|
−
1
3
ln
|
x
2
+
x
+
1
|
+
C
∫
x
6
+
x
+
1
x
4
+
5
x
2
+
4
d
x
=
⋯
=
∫
x
2
−
5
+
21
x
2
+
x
+
21
x
4
+
5
x
2
+
4
d
x
=
=
∫
(
x
2
−
5
)
d
x
+
∫
21
x
2
+
x
+
21
(
x
2
+
1
)
(
x
2
+
4
)
d
x
=
…
a
2
−
x
2
x
=
a
⋅
sin
t
a
2
+
x
2
x
=
a
⋅
tan
t
x
2
−
a
2
x
=
a
cos
2
t
For example:
∫
1
x
2
4
−
x
2
d
x
x
=
2
sin
t
⟹
d
x
=
2
cos
t
d
t
∫
1
x
2
4
−
x
2
d
x
=
∫
2
cos
t
4
sin
2
t
4
cos
2
t
d
t
=
1
4
∫
1
sin
2
t
d
t
=
−
1
4
cot
t
+
C
sin
2
t
=
x
2
4
=
1
−
cos
2
t
⟹
cos
t
=
1
−
x
2
2
⟹
∫
1
x
2
4
−
x
2
d
x
=
−
1
−
x
2
4
x
+
C
∫
1
sin
x
d
x
=
{
t
=
tan
x
2
d
x
=
2
1
+
t
2
d
t
sin
x
=
2
t
1
+
t
2
}
=
∫
1
+
t
2
2
t
2
1
+
t
2
d
t
=
∫
1
t
d
t
=
=
ln
|
tan
x
2
|
+
C
∫
1
cos
x
d
x
=
{
t
=
tan
x
2
d
x
=
2
1
+
t
2
d
t
cos
x
=
1
−
t
2
1
+
t
2
}
=
∫
1
+
t
2
1
−
t
2
2
1
+
t
2
d
t
=
∫
2
1
−
t
2
d
t
=
=
ln
|
1
−
t
|
+
ln
|
1
+
t
|
+
C