Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-2 3
∫
0
1
x
d
x
=
{
Δ
x
i
=
1
m
x
i
=
i
m
}
=
lim
m
→
∞
∑
i
=
1
m
f
(
i
m
)
m
=
lim
m
→
∞
∑
i
=
1
m
i
m
2
=
lim
m
→
∞
1
m
2
∑
i
=
1
m
i
=
=
lim
m
→
∞
1
m
2
⋅
m
(
m
+
1
)
2
=
lim
m
→
∞
m
2
+
m
2
m
2
=
1
2
∫
0
5
(
5
−
x
)
d
=
{
δ
x
i
=
5
m
x
i
=
5
i
m
}
=
lim
m
→
∞
∑
i
=
1
m
(
5
−
5
i
m
)
⋅
5
m
=
=
lim
m
→
∞
∑
i
=
1
m
25
m
−
∑
i
=
1
m
25
i
m
2
=
25
−
lim
m
→
∞
25
m
2
∑
i
=
1
m
i
=
25
2
∫
0
1
x
2
d
x
=
{
Δ
x
i
=
1
m
x
i
=
i
m
}
=
lim
m
→
∞
∑
i
=
1
m
i
2
m
3
=
lim
m
→
∞
1
m
3
∑
i
=
1
m
i
2
=
=
lim
m
→
∞
m
(
m
+
1
)
(
2
m
+
1
)
6
m
3
=
lim
m
→
∞
2
m
3
+
3
m
2
+
m
m
3
=
1
3
∫
3
5
x
d
=
{
Δ
x
i
=
3
+
2
m
x
i
=
2
i
m
}
=
lim
m
→
∞
∑
i
=
1
m
6
m
+
4
i
m
2
=
lim
m
→
∞
6
∑
i
=
1
m
1
m
+
4
m
2
+
4
m
2
m
2
=
=
6
+
2
=
8
∫
0
1
x
d
x
=
{
Δ
x
i
=
1
m
x
i
=
i
m
}
=
lim
m
→
∞
∑
i
=
1
m
i
m
1
m
=
lim
m
→
∞
1
m
m
∑
i
=
1
m
i
=
?
?
?
∫
0
1
x
d
x
=
{
Δ
x
i
=
2
i
−
1
m
2
x
i
=
i
2
m
2
}
=
lim
m
→
∞
∑
i
=
1
m
i
(
2
i
−
1
)
m
3
=
lim
m
→
∞
2
m
3
∑
i
=
1
m
i
2
−
1
m
3
∑
i
=
1
m
i
=
=
lim
m
→
∞
2
(
2
m
3
+
3
m
2
+
m
)
6
m
3
−
m
2
+
m
2
m
3
=
lim
m
→
∞
4
m
3
+
3
m
2
−
m
6
m
3
=
2
3
D
(
x
)
=
{
0
x
∈
Q
1
x
∉
Q
x
i
∈
Q
⟹
∑
i
=
1
m
1
m
⋅
0
→
0
x
i
∉
Q
⟹
∑
i
=
1
m
1
m
⋅
1
→
1
⟹
D
(
x
)
is not Riemann-integrable
f
(
x
)
=
{
1
x
2
x
>
0
0
x
=
0
on
[
0
,
1
]
f
is not bounded at
0
⟹
f
is not integrable on
[
0
,
1
]
∫
1
4
1
x
3
d
x
=
{
Δ
x
i
=
4
i
/
n
(
1
−
1
4
1
/
n
)
x
i
=
4
i
/
n
}
=
lim
n
→
∞
∑
i
=
1
n
1
4
3
i
/
n
⋅
4
i
/
n
(
1
−
1
4
1
/
n
)
=
=
lim
n
→
∞
(
1
−
1
4
1
/
n
)
⋅
∑
i
=
1
n
1
4
2
i
/
n
=
lim
n
→
∞
(
1
−
1
4
1
/
n
)
⋅
1
4
2
/
n
⋅
(
1
4
2
−
1
)
1
4
2
/
n
−
1
=
lim
n
→
∞
1
4
2
/
n
(
1
−
1
16
)
1
+
4
1
/
n
=
15
32