Infi-2 4

Let f(x)=coshxCalculate revolution surface area on [0,1]A(f)=2π01f(x)1+(f(x))2dx=2π01f2(x)dx=2π01e2x+2+e2x4dx==π2(e2x2+2xe2x2)|01=π2(e22+2e22)
limnk=1nnn2+k2=limn1nn2n2+k2=limλ(P)0S(f,P,C)f(ck)=f(kn)=n2n2+k2=11+k2n2=11+(kn)2f(x)=11+x2limnk=1nnn2+k2=01f(x)dx=arctan(x)|01=π4
k=1nkn2sin(kn)=i=1n1nknsin(nk)=01xsinxdx=xcosx|01+01cosxdx==cos1+sin1
k=1nkn2ekn=01xexdx=(x1)ex|01=1
(α(x)β(x)f(t)dt)=f(β(x))β(x)f(α(x))α(x)
xx3sin(t)cos(t2)etdt=sin(x3)cos(x6)ex33x2sin(x)cos(x2)ex
limx0(0x2sin(t2)dt)x6=Llimx02xsin(x4)6x5=13limx0sin(x4)x4=13
e1eln(x)sin(ln(x)+1)xdx={t=lnx+1dt=dxxt(e)=2t(e1)=0}==02(t1)sintdtdx={f(t)=t1f(t)=1g(t)=sintg(t)=cost}==(1t)cost|02+sint|02=cos(2)1+sin(2)
mf(x)Mm(ba)abf(x)dxM(ba)f(c)=(abf(x)dx)ba
Prove that the following equation has a unique solution on [1,1]x=0xsin100tdtg(x)=x0xsin100tdtg(1)=1+10sin100tdt10g(1)=101sin100tdt10c[1,1]:g(c)=0g(x)=1sin100x>0!c[1,1]:g(c)=0