Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-2 4
Let
f
(
x
)
=
cosh
x
Calculate revolution surface area on
[
0
,
1
]
A
(
f
)
=
2
π
∫
0
1
f
(
x
)
1
+
(
f
′
(
x
)
)
2
d
x
=
2
π
∫
0
1
f
2
(
x
)
d
x
=
2
π
∫
0
1
e
2
x
+
2
+
e
−
2
x
4
d
x
=
=
π
2
(
e
2
x
2
+
2
x
−
e
−
2
x
2
)
|
0
1
=
π
2
(
e
2
2
+
2
−
e
−
2
2
)
lim
n
→
∞
∑
k
=
1
n
n
n
2
+
k
2
=
lim
n
→
∞
1
n
⋅
n
2
n
2
+
k
2
=
lim
λ
(
P
)
→
0
S
(
f
,
P
,
C
)
f
(
c
k
)
=
f
(
k
n
)
=
n
2
n
2
+
k
2
=
1
1
+
k
2
n
2
=
1
1
+
(
k
n
)
2
⟹
f
(
x
)
=
1
1
+
x
2
⟹
lim
n
→
∞
∑
k
=
1
n
n
n
2
+
k
2
=
∫
0
1
f
(
x
)
d
x
=
arctan
(
x
)
|
0
1
=
π
4
∑
k
=
1
n
k
n
2
sin
(
k
n
)
=
∑
i
=
1
n
1
n
⋅
k
n
sin
(
n
k
)
=
∫
0
1
x
sin
x
d
x
=
−
x
cos
x
|
0
1
+
∫
0
1
cos
x
d
x
=
=
−
cos
1
+
sin
1
∑
k
=
1
n
k
n
2
e
k
n
=
∫
0
1
x
e
x
d
x
=
(
x
−
1
)
e
x
|
0
1
=
1
(
∫
α
(
x
)
β
(
x
)
f
(
t
)
d
t
)
′
=
f
(
β
(
x
)
)
β
′
(
x
)
−
f
(
α
(
x
)
)
α
′
(
x
)
∫
x
x
3
sin
(
t
)
cos
(
t
2
)
e
t
d
t
=
sin
(
x
3
)
cos
(
x
6
)
e
x
3
3
x
2
−
sin
(
x
)
cos
(
x
2
)
e
x
lim
x
→
0
(
∫
0
x
2
sin
(
t
2
)
d
t
)
x
6
=
L
lim
x
→
0
2
x
sin
(
x
4
)
6
x
5
=
1
3
lim
x
→
0
sin
(
x
4
)
x
4
=
1
3
∫
e
−
1
e
ln
(
x
)
sin
(
ln
(
x
)
+
1
)
x
d
x
=
{
t
=
ln
x
+
1
⟹
d
t
=
d
x
x
t
(
e
)
=
2
t
(
e
−
1
)
=
0
}
=
=
∫
0
2
(
t
−
1
)
sin
t
d
t
d
x
=
{
f
(
t
)
=
t
−
1
⟹
f
′
(
t
)
=
1
g
′
(
t
)
=
sin
t
⟹
g
(
t
)
=
−
cos
t
}
=
=
(
1
−
t
)
cos
t
|
0
2
+
sin
t
|
0
2
=
−
cos
(
2
)
−
1
+
sin
(
2
)
m
≤
f
(
x
)
≤
M
m
(
b
−
a
)
≤
∫
a
b
f
(
x
)
d
x
≤
M
(
b
−
a
)
f
(
c
)
=
(
∫
a
b
f
(
x
)
d
x
)
b
−
a
Prove that the following equation has a unique solution on
[
−
1
,
1
]
x
=
∫
0
x
sin
100
t
d
t
g
(
x
)
=
x
−
∫
0
x
sin
100
t
d
t
g
(
−
1
)
=
−
1
+
∫
−
1
0
sin
100
t
d
t
⏟
≤
1
≤
0
g
(
1
)
=
1
−
∫
0
1
sin
100
t
d
t
⏟
≥
−
1
≥
0
⟹
∃
c
∈
[
−
1
,
1
]
:
g
(
c
)
=
0
g
′
(
x
)
=
1
−
sin
100
x
>
0
⟹
∃
!
c
∈
[
−
1
,
1
]
:
g
(
c
)
=
0