Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-2 6
Dirichlet's convergence test for integrals
Let
f
be a continuously differentiable, monotonically decreasing function
lim
x
→
∞
f
(
x
)
=
0
Let
g
be continuous
Let
G
(
x
)
=
∫
a
x
g
(
t
)
d
t
be bounded
Then
∫
a
∞
f
(
x
)
g
(
x
)
d
x
converges
∫
a
∞
cos
(
x
)
x
d
x
f
(
x
)
=
1
x
g
(
x
)
=
cos
x
=
G
(
x
)
=
sin
(
x
)
−
sin
(
a
)
⟹
Integral converges
∫
a
∞
sin
(
x
2
)
d
x
t
=
x
2
⟹
d
t
=
2
x
d
x
⟹
d
x
=
d
t
2
t
∫
a
2
∞
sin
(
t
)
2
t
d
t
converges
But
lim
x
→
∞
sin
(
x
2
)
≠
0
∫
−
∞
∞
1
x
2
+
34
d
x
=
∫
−
∞
0
1
x
2
+
34
d
x
+
∫
0
∞
1
x
2
+
34
d
x
=
lim
b
→
∞
1
34
arctan
(
x
34
)
|
x
=
−
b
x
=
0
+
lim
b
→
∞
1
34
arctan
(
x
34
)
|
x
=
0
x
=
b
=
π
34
∫
0
1
cot
x
d
x
=
lim
a
→
0
+
∫
a
1
cot
x
d
x
=
lim
a
→
0
+
ln
|
sin
x
|
|
x
=
a
x
=
1
=
lim
n
→
∞
ln
(
sin
(
1
)
)
−
ln
(
sin
(
a
)
)
=
∞
∀
n
≥
0
:
∫
0
∞
x
n
e
−
x
d
x
=
n
!
Proof (a little more complicated than the standard one) in Lecture 8
∫
1
∞
sin
(
x
+
20
x
3
−
2
)
d
x
=
∫
1
3
sin
(
x
+
20
x
3
−
2
)
d
x
+
∫
3
∞
sin
(
x
+
20
x
3
−
2
)
d
x
∫
3
∞
sin
(
x
+
20
x
3
−
2
)
d
x
converges
⟺
∫
3
∞
x
+
20
x
3
−
2
d
x
converges
∫
3
∞
x
+
20
x
3
−
2
d
x
converges
⟺
∫
3
∞
1
x
2
d
x
converges
∫
0
1
sin
(
1
x
)
x
d
x
=
{
t
=
1
x
d
t
=
−
1
x
2
d
x
x
=
0
⟹
t
=
∞
x
=
1
⟹
t
=
1
}
=
∫
1
∞
sin
(
t
)
t
d
t
⟹
Converges by the Dirichlet’s test
|
sin
t
t
|
≥
sin
2
t
t
=
1
−
cos
(
2
t
)
2
t
=
1
2
(
1
t
−
cos
(
2
t
)
t
)
⏟
Integral diverges
∫
0
∞
(
−
1
)
⌊
x
2
⌋
d
x
=
∑
n
=
0
∞
∫
n
n
+
1
(
−
1
)
n
d
x
=
=
∑
n
=
0
∞
(
−
1
)
n
1
n
+
1
+
n
converges by the Leibniz test
∫
0
π
/
2
1
sin
a
(
x
2
)
cos
b
(
x
)
d
x
=
=
∫
0
1
1
sin
a
(
x
2
)
cos
b
(
x
)
d
x
+
∫
1
π
/
2
1
sin
a
(
x
2
)
cos
b
(
x
)
d
x
lim
x
→
0
1
cos
b
x
⋅
1
sin
a
(
x
2
)
(
1
x
2
)
a
=
lim
x
→
0
1
cos
b
x
⋅
(
1
sin
(
x
2
)
1
x
2
)
a
→
x
→
0
1
a
=
1
⟹
∫
0
1
f
(
x
)
d
x
converges
⟺
2
a
<
1
⟺
a
<
1
2
lim
x
→
π
2
1
(
π
−
x
)
b
1
sin
a
(
x
2
)
cos
b
(
x
)
=
1
sin
a
(
π
4
)
⟹
∫
1
π
/
2
f
(
x
)
d
x
converges
⟺
b
<
1