Infi-2 6

Dirichlet's convergence test for integrals

Let f be a continuously differentiable, monotonically decreasing functionlimxf(x)=0Let g be continuousLet G(x)=axg(t)dt be boundedThen af(x)g(x)dx converges
acos(x)xdxf(x)=1xg(x)=cosx=G(x)=sin(x)sin(a)Integral converges
asin(x2)dxt=x2dt=2xdxdx=dt2ta2sin(t)2tdt convergesBut limxsin(x2)0
1x2+34dx=01x2+34dx+01x2+34dx=limb134arctan(x34)|x=bx=0+limb134arctan(x34)|x=0x=b=π34
01cotxdx=lima0+a1cotxdx=lima0+ln|sinx||x=ax=1=limnln(sin(1))ln(sin(a))=
n0:0xnexdx=n!Proof (a little more complicated than the standard one) in Lecture 8
1sin(x+20x32)dx=13sin(x+20x32)dx+3sin(x+20x32)dx3sin(x+20x32)dx converges3x+20x32dx converges3x+20x32dx converges31x2dx converges
01sin(1x)xdx={t=1xdt=1x2dxx=0t=x=1t=1}=1sin(t)tdtConverges by the Dirichlet’s test|sintt|sin2tt=1cos(2t)2t=12(1tcos(2t)t)Integral diverges
0(1)x2dx=n=0nn+1(1)ndx==n=0(1)n1n+1+n converges by the Leibniz test
0π/21sina(x2)cosb(x)dx==011sina(x2)cosb(x)dx+1π/21sina(x2)cosb(x)dxlimx01cosbx1sina(x2)(1x2)a=limx01cosbx(1sin(x2)1x2)ax01a=101f(x)dx converges2a<1a<12limxπ21(πx)b1sina(x2)cosb(x)=1sina(π4)1π/2f(x)dx convergesb<1