Infi-2 7

an:NRfn:NRD

Pointwise convergence

fnfxD:ε>0:Nx,ε:nNx,ε:|fn(x)f(x)|<ε
(0,)fn(x)=n(xn1)limnfn(x)=limnxn11n=t=1nlimt0xt1t=ln(x)
fn(x)=n21+n2x2limnfn(x)=limn11n2+x2=1x2
Let {fn(x)}f(x) on [a,b]Let n,x[a,b]:fn(x) is boundedThen not necessarily f is bounded

Uniform convergence

fnfε>0:Nε:nNε:xD:|fn(x)f(x)|<εLet dn=supxD|fn(x)f(x)|fnfdn0
fnf and fn is continuousf is continuous
Let fnf and fn(x) be boundedf is boundedAnd exists M that bounds fn for every nnN:|fn||fnf|+|ffN|+|fN|<2+MNnN:|fn|max{M1,M2,,MN1,2+MN}
[0,1]fn(x)=x1+n2x2fn0dn=supx[0,1]x1+n2x2=maxx[0,1]x1+n2x2x=0dn=0x=1dn=11+n20=(x1+n2x2)=(1+n2x2)2n2x2(1+n2x2)2=1n2x2(1+n2x2)2x2=1n2x=1nfn(1n)=12ndn=12n0fn0