Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-2 8
∑
n
=
0
∞
2
n
x
n
n
!
lim
n
→
∞
2
n
+
1
x
n
+
1
(
n
+
1
)
!
2
n
x
n
n
!
=
lim
n
→
∞
2
x
n
+
1
=
0
∀
x
∈
R
:
∑
n
=
0
∞
2
n
x
n
n
!
→
S
(
x
)
∑
n
=
1
∞
sin
(
n
!
x
)
n
3
+
n
+
1
,
x
∈
[
−
2
π
,
2
]
|
sin
(
n
!
x
)
n
3
+
n
+
1
|
≤
1
n
3
+
n
+
1
≤
1
n
3
∑
n
=
1
∞
1
n
→
M
⟹
∑
n
=
1
∞
sin
(
n
!
x
)
n
3
+
n
+
1
⇉
S
(
x
)
∑
n
=
2
∞
x
4
+
x
2
n
ln
2
(
n
)
,
x
∈
[
−
7
,
2
]
|
x
4
+
x
2
n
ln
2
(
n
)
|
≤
7
4
+
7
2
n
ln
2
(
n
)
∑
n
=
2
∞
1
n
ln
2
(
n
)
→
M
by the Cauchy’s condensation test
⟹
∑
n
=
2
∞
x
4
+
x
2
n
ln
2
(
n
)
⇉
S
(
x
)
∑
n
=
0
∞
sin
(
x
)
(
1
+
x
)
n
∑
n
=
0
∞
sin
(
x
)
(
1
+
x
)
n
=
sin
(
x
)
⋅
∑
n
=
0
∞
t
n
=
1
1
−
1
1
+
x
=
sin
(
x
)
⋅
1
+
x
x
Let
f
(
x
)
=
{
sin
(
x
)
⋅
1
+
x
x
x
≠
0
0
x
=
0
f
is not continuous
⟹
x
∈
[
0
,
π
)
⟹
∑
n
=
0
∞
sin
(
x
)
(
1
+
x
)
n
⇉̸
f
(
x
)
Let
d
N
=
sup
x
∈
(
0
,
π
)
|
S
N
(
x
)
−
f
(
x
)
|
d
N
′
=
sup
x
∈
[
0
,
π
)
|
S
N
(
x
)
−
f
(
x
)
|
=
max
{
d
N
,
|
S
N
(
0
)
−
f
(
0
)
|
}
=
d
N
d
n
′
↛
0
⟹
d
n
↛
0
⟹
x
∈
(
0
,
π
)
⟹
∑
n
=
0
∞
sin
(
x
)
(
1
+
x
)
n
⇉̸
f
(
x
)
∑
n
=
1
∞
1
n
⋅
3
n
Let
x
=
1
3
∑
n
=
1
∞
1
n
⋅
x
n
=
∑
n
=
1
∞
∫
0
x
t
n
−
1
d
t
=
t
∈
[
−
1
2
,
1
2
]
∑
n
=
1
∞
t
n
−
1
⇉
S
(
x
)
∫
0
x
∑
n
=
1
∞
t
n
−
1
d
t
=
∫
0
x
1
1
−
t
d
t
=
−
ln
|
1
−
x
|
⟹
∑
n
=
1
∞
1
n
⋅
3
n
=
ln
(
3
2
)
∑
n
=
1
∞
n
x
n
∑
n
=
1
∞
n
x
n
=
x
⋅
∑
n
=
1
∞
n
x
n
−
1
=
x
(
1
−
x
)
2