Infi-2 8

n=02nxnn!limn2n+1xn+1(n+1)!2nxnn!=limn2xn+1=0xR:n=02nxnn!S(x)
n=1sin(n!x)n3+n+1,x[2π,2]|sin(n!x)n3+n+1|1n3+n+11n3n=11nMn=1sin(n!x)n3+n+1S(x)
n=2x4+x2nln2(n),x[7,2]|x4+x2nln2(n)|74+72nln2(n)n=21nln2(n)M by the Cauchy’s condensation testn=2x4+x2nln2(n)S(x)
n=0sin(x)(1+x)nn=0sin(x)(1+x)n=sin(x)n=0tn=1111+x=sin(x)1+xxLet f(x)={sin(x)1+xxx00x=0f is not continuousx[0,π)n=0sin(x)(1+x)n⇉̸f(x)Let dN=supx(0,π)|SN(x)f(x)|dN=supx[0,π)|SN(x)f(x)|=max{dN,|SN(0)f(0)|}=dNdn0dn0x(0,π)n=0sin(x)(1+x)n⇉̸f(x)
n=11n3nLet x=13n=11nxn=n=10xtn1dt=t[12,12]n=1tn1S(x)0xn=1tn1dt=0x11tdt=ln|1x|n=11n3n=ln(32)
n=1nxnn=1nxn=xn=1nxn1=x(1x)2