Linear-1 10

Linear-1 10

Change of basis

Let V vector spaceLet B,C bases of VThen !A:vV:A[v]B=[v]CMatrix A is denoted as [I]CB[I]CB[v]B=[v]CHow do we find this matrix?B={v1,,vn}C={w1,,wn}[I]CB=([v1]C[vn]C)

Example

Let V=R1[x]B={2,x+1}C={x,2x+4}[2]C=(112)[x+1]C=(1214)[I]CB=(1121214)p(x)V:(1121214)[p(x)]B=[p(x)]CLet p(x)=3x+1[p(x)]B=(13)[p(x)]C=(1121214)(13)=(5214)

Exercise

Let V=R2[x]B={1+2x,3+5x,v} is a basis of V[x2+1]B=(211)Find vSolution:x2+1=2+4x35x+vv=x2+x+2

Properties

1.[I]BB=I2.[I]BC[I]CD=[I]BD3.[I]BC is invertible, ([I]BC)1=[I]CB

Exercise

Let V=FnB={v1,,vn} basis of VS is a standard basis of VFind [I]SBSolution:vV:[v]S=v[I]SB==([v1]S[vn]S)=(v1vn)[I]CB=[I]CS[I]SB=([I]SC)1[I]SB==(w1wn)1(v1vn)

Example

B={(124),(862),(124)}C={(614),(205),(101)}[I]CB=(621100451)1(181262424)

Exercise

A=(101030031)B={(101),(120),(046)} is a basis of R3Find C={w1,w2,w3} basis of R3Such that A=[I]BCSolution:[w1]B=C1([I]BC)=(100)w1=(101)[w2]B=C2([I]BC)=(033)w2=3(120)+3(046)=(31818)[w3]B=C3([I]BC)=(101)w3=(100)+(046)=(146)Another approachA=[I]CB=[I]BS[I]SC[I]SC=[I]SBA=(110024106)(101030031)=(13101841186)=(w1w2w3)Find C={w1,w2,w3} basis of R3Such that A=[I]CBSolution:A=[I]CBA1=[I]BC=[I]BS[I]SC(w1w2w3)=[I]SC=[I]SBA1

Exercise

[I]CB=(002100011)Find connection between B and CSolution:B={v1,v2,v3}C={w1,w2,w3}[v1]C=C1([I]CB)=(010)v1=w2[v2]C=C2([I]CB)=(001)v2=w3[v3]C=C3([I]CB)=(201)v3=2w1+w3

Exercise

U,V,W vector spaces over FT:UV linear transformationS:VW linear transformationLet S^:Im(T)W,vIm(T):S^(v)=S(v)1.Prove: ker(S^)=ker(S)Im(T)Im(S^)=Im(ST)2.dim(ker(ST))dim(ker(S))+dim(ker(T))3.dim(ker(ST))=dim(ker(S))+dim(ker(T))ker(S)Im(T)Proof for 1.Let vker(S^)S^(v)=0=S(v)vker(S)ker(S^)Im(T)vIm(T)vker(S)Im(T)ker(S^)ker(S)Im(T)Let vker(S)Im(T)vker(S)vIm(T)S(v)=0S^(v)=S(v)=0vker(S^)ker(S)Im(T)ker(S^)ker(S^)=ker(S)Im(T)Let wIm(S^)vIm(T):S^(v)=w=S(v)uU:T(u)=vw=S(T(u))=(ST)(u)wIm(ST)Im(S^)Im(ST)Let wIm(ST)uU:(ST)(u)=w=S(T(u))vV:v=T(u)vIm(T)S(v)=wS^(v)=wwIm)S^Im(ST)Im(S^)Im(S^)=Im(ST)Proof for 2.1.dim(Im(T))+dim(ker(T))=dim(U)2.dim(Im(ST))+dim(ker(ST))=dim(U)3.dim(Im(S^))+dim(ker(S^))=dim(Im(T))3.dim(Im(ST))+dim(ker(S)Im(T))=dim(Im(T))(1.2.)dim(ker(ST))=dim(Im(T))+dim(ker(T))dim(Im(ST))==dim(Im(ST))+dim(ker(S)Im(T))+dim(ker(T))dim(Im(ST))==dim(ker(S)Im(T))+dim(ker(T))dim(ker(S))+dim(ker(T))dim(ker(ST))dim(ker(S))+dim(ker(T))Proof for 3.dim(ker(ST))=dim(ker(S))+dim(ker(T))dim(ker(S)Im(T))+dim(ker(T))=dim(ker(S))+dim(ker(T))dim(ker(S)Im(T))=dim(ker(S))ker(S)Im(T)=ker(S)ker(S)Im(T)dim(ker(ST))=dim(ker(S))+dim(ker(T))ker(S)Im(T)