Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 10
Linear-1 10
Change of basis
Let
V
vector space
Let
B
,
C
bases of
V
Then
∃
!
A
:
∀
v
∈
V
:
A
[
v
]
B
=
[
v
]
C
Matrix
A
is denoted as
[
I
]
C
B
[
I
]
C
B
[
v
]
B
=
[
v
]
C
How do we find this matrix?
B
=
{
v
1
,
…
,
v
n
}
C
=
{
w
1
,
…
,
w
n
}
[
I
]
C
B
=
(
⋮
⋮
[
v
1
]
C
…
[
v
n
]
C
⋮
⋮
)
Example
Let
V
=
R
1
[
x
]
B
=
{
2
,
x
+
1
}
C
=
{
x
,
2
x
+
4
}
[
2
]
C
=
(
−
1
1
2
)
[
x
+
1
]
C
=
(
1
2
1
4
)
⟹
[
I
]
C
B
=
(
−
1
1
2
1
2
1
4
)
⟹
∀
p
(
x
)
∈
V
:
(
−
1
1
2
1
2
1
4
)
[
p
(
x
)
]
B
=
[
p
(
x
)
]
C
Let
p
(
x
)
=
3
x
+
1
⟹
[
p
(
x
)
]
B
=
(
−
1
3
)
⟹
[
p
(
x
)
]
C
=
(
−
1
1
2
1
2
1
4
)
⋅
(
−
1
3
)
=
(
5
2
1
4
)
Exercise
Let
V
=
R
2
[
x
]
B
=
{
1
+
2
x
,
3
+
5
x
,
v
}
is a basis of
V
[
x
2
+
1
]
B
=
(
2
−
1
1
)
Find
v
Solution:
x
2
+
1
=
2
+
4
x
−
3
−
5
x
+
v
⟹
v
=
x
2
+
x
+
2
Properties
1.
[
I
]
B
B
=
I
2.
[
I
]
B
C
[
I
]
C
D
=
[
I
]
B
D
3.
[
I
]
B
C
is invertible,
(
[
I
]
B
C
)
−
1
=
[
I
]
C
B
Exercise
Let
V
=
F
n
B
=
{
v
1
,
…
,
v
n
}
basis of
V
S
is a standard basis of
V
Find
[
I
]
S
B
Solution:
∀
v
∈
V
:
[
v
]
S
=
v
⟹
[
I
]
S
B
==
(
⋮
⋮
[
v
1
]
S
…
[
v
n
]
S
⋮
⋮
)
=
(
⋮
⋮
v
1
…
v
n
⋮
⋮
)
⟹
[
I
]
C
B
=
[
I
]
C
S
⋅
[
I
]
S
B
=
(
[
I
]
S
C
)
−
1
[
I
]
S
B
=
=
(
⋮
⋮
w
1
…
w
n
⋮
⋮
)
−
1
⋅
(
⋮
⋮
v
1
…
v
n
⋮
⋮
)
Example
B
=
{
(
1
2
4
)
,
(
8
6
2
)
,
(
−
1
−
2
4
)
}
C
=
{
(
6
−
1
4
)
,
(
2
0
5
)
,
(
1
0
−
1
)
}
[
I
]
C
B
=
(
6
2
1
−
1
0
0
4
5
−
1
)
−
1
⋅
(
1
8
−
1
2
6
−
2
4
2
4
)
Exercise
A
=
(
1
0
1
0
3
0
0
3
1
)
B
=
{
(
1
0
1
)
,
(
1
2
0
)
,
(
0
4
6
)
}
is a basis of
R
3
Find
C
=
{
w
1
,
w
2
,
w
3
}
basis of
R
3
Such that
A
=
[
I
]
B
C
Solution:
[
w
1
]
B
=
C
1
(
[
I
]
B
C
)
=
(
1
0
0
)
⟹
w
1
=
(
1
0
1
)
[
w
2
]
B
=
C
2
(
[
I
]
B
C
)
=
(
0
3
3
)
⟹
w
2
=
3
(
1
2
0
)
+
3
(
0
4
6
)
=
(
3
18
18
)
[
w
3
]
B
=
C
3
(
[
I
]
B
C
)
=
(
1
0
1
)
⟹
w
3
=
(
1
0
0
)
+
(
0
4
6
)
=
(
1
4
6
)
Another approach
A
=
[
I
]
C
B
=
[
I
]
B
S
⋅
[
I
]
S
C
⟹
[
I
]
S
C
=
[
I
]
S
B
⋅
A
=
(
1
1
0
0
2
4
1
0
6
)
⋅
(
1
0
1
0
3
0
0
3
1
)
=
(
1
3
1
0
18
4
1
18
6
)
=
(
w
1
w
2
w
3
)
Find
C
=
{
w
1
,
w
2
,
w
3
}
basis of
R
3
Such that
A
=
[
I
]
C
B
Solution:
A
=
[
I
]
C
B
A
−
1
=
[
I
]
B
C
=
[
I
]
B
S
⋅
[
I
]
S
C
⟹
(
w
1
w
2
w
3
)
=
[
I
]
S
C
=
[
I
]
S
B
⋅
A
−
1
Exercise
[
I
]
C
B
=
(
0
0
2
1
0
0
0
1
1
)
Find connection between
B
and
C
Solution:
B
=
{
v
1
,
v
2
,
v
3
}
C
=
{
w
1
,
w
2
,
w
3
}
[
v
1
]
C
=
C
1
(
[
I
]
C
B
)
=
(
0
1
0
)
⟹
v
1
=
w
2
[
v
2
]
C
=
C
2
(
[
I
]
C
B
)
=
(
0
0
1
)
⟹
v
2
=
w
3
[
v
3
]
C
=
C
3
(
[
I
]
C
B
)
=
(
2
0
1
)
⟹
v
3
=
2
w
1
+
w
3
Exercise
U
,
V
,
W
vector spaces over
F
T
:
U
→
V
linear transformation
S
:
V
→
W
linear transformation
Let
S
^
:
I
m
(
T
)
→
W
,
∀
v
∈
I
m
(
T
)
:
S
^
(
v
)
=
S
(
v
)
1.
Prove:
k
e
r
(
S
^
)
=
k
e
r
(
S
)
∩
I
m
(
T
)
I
m
(
S
^
)
=
I
m
(
S
T
)
2.
d
i
m
(
k
e
r
(
S
T
)
)
≤
d
i
m
(
k
e
r
(
S
)
)
+
d
i
m
(
k
e
r
(
T
)
)
3.
d
i
m
(
k
e
r
(
S
T
)
)
=
d
i
m
(
k
e
r
(
S
)
)
+
d
i
m
(
k
e
r
(
T
)
)
⟺
k
e
r
(
S
)
⊆
I
m
(
T
)
Proof for 1.
Let
v
∈
k
e
r
(
S
^
)
⟹
S
^
(
v
)
=
0
=
S
(
v
)
⟹
v
∈
k
e
r
(
S
)
k
e
r
(
S
^
)
⊆
I
m
(
T
)
⟹
v
∈
I
m
(
T
)
⟹
v
∈
k
e
r
(
S
)
∩
I
m
(
T
)
⟹
k
e
r
(
S
^
)
⊆
k
e
r
(
S
)
∩
I
m
(
T
)
Let
v
∈
k
e
r
(
S
)
∩
I
m
(
T
)
⟹
v
∈
k
e
r
(
S
)
∧
v
∈
I
m
(
T
)
⟹
S
(
v
)
=
0
∧
∃
S
^
(
v
)
=
S
(
v
)
=
0
⟹
v
∈
k
e
r
(
S
^
)
⟹
k
e
r
(
S
)
∩
I
m
(
T
)
⊆
k
e
r
(
S
^
)
⟹
k
e
r
(
S
^
)
=
k
e
r
(
S
)
∩
I
m
(
T
)
Let
w
∈
I
m
(
S
^
)
⟹
∃
v
∈
I
m
(
T
)
:
S
^
(
v
)
=
w
=
S
(
v
)
⟹
∃
u
∈
U
:
T
(
u
)
=
v
⟹
w
=
S
(
T
(
u
)
)
=
(
S
T
)
(
u
)
⟹
w
∈
I
m
(
S
T
)
⟹
I
m
(
S
^
)
⊆
I
m
(
S
T
)
Let
w
∈
I
m
(
S
T
)
⟹
∃
u
∈
U
:
(
S
T
)
(
u
)
=
w
=
S
(
T
(
u
)
)
⟹
∃
v
∈
V
:
v
=
T
(
u
)
⟹
v
∈
I
m
(
T
)
∧
S
(
v
)
=
w
⟹
S
^
(
v
)
=
w
⟹
w
∈
I
m
)
S
^
⟹
I
m
(
S
T
)
⊆
I
m
(
S
^
)
⟹
I
m
(
S
^
)
=
I
m
(
S
T
)
Proof for 2.
1.
d
i
m
(
I
m
(
T
)
)
+
d
i
m
(
k
e
r
(
T
)
)
=
d
i
m
(
U
)
2.
d
i
m
(
I
m
(
S
T
)
)
+
d
i
m
(
k
e
r
(
S
T
)
)
=
d
i
m
(
U
)
3.
d
i
m
(
I
m
(
S
^
)
)
+
d
i
m
(
k
e
r
(
S
^
)
)
=
d
i
m
(
I
m
(
T
)
)
3.
⟹
d
i
m
(
I
m
(
S
T
)
)
+
d
i
m
(
k
e
r
(
S
)
∩
I
m
(
T
)
)
=
d
i
m
(
I
m
(
T
)
)
(
1.
−
2.
)
⟹
d
i
m
(
k
e
r
(
S
T
)
)
=
d
i
m
(
I
m
(
T
)
)
+
d
i
m
(
k
e
r
(
T
)
)
−
d
i
m
(
I
m
(
S
T
)
)
=
=
d
i
m
(
I
m
(
S
T
)
)
+
d
i
m
(
k
e
r
(
S
)
∩
I
m
(
T
)
)
+
d
i
m
(
k
e
r
(
T
)
)
−
d
i
m
(
I
m
(
S
T
)
)
=
=
d
i
m
(
k
e
r
(
S
)
∩
I
m
(
T
)
)
+
d
i
m
(
k
e
r
(
T
)
)
≤
d
i
m
(
k
e
r
(
S
)
)
+
d
i
m
(
k
e
r
(
T
)
)
⟹
d
i
m
(
k
e
r
(
S
T
)
)
≤
d
i
m
(
k
e
r
(
S
)
)
+
d
i
m
(
k
e
r
(
T
)
)
Proof for 3.
d
i
m
(
k
e
r
(
S
T
)
)
=
d
i
m
(
k
e
r
(
S
)
)
+
d
i
m
(
k
e
r
(
T
)
)
⟺
d
i
m
(
k
e
r
(
S
)
∩
I
m
(
T
)
)
+
d
i
m
(
k
e
r
(
T
)
)
=
d
i
m
(
k
e
r
(
S
)
)
+
d
i
m
(
k
e
r
(
T
)
)
⟺
d
i
m
(
k
e
r
(
S
)
∩
I
m
(
T
)
)
=
d
i
m
(
k
e
r
(
S
)
)
⟺
k
e
r
(
S
)
∩
I
m
(
T
)
=
k
e
r
(
S
)
⟺
k
e
r
(
S
)
⊆
I
m
(
T
)
⟹
d
i
m
(
k
e
r
(
S
T
)
)
=
d
i
m
(
k
e
r
(
S
)
)
+
d
i
m
(
k
e
r
(
T
)
)
⟺
k
e
r
(
S
)
⊆
I
m
(
T
)