Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 11
Linear-1 11
Properties of linear transformation matrix
1.
[
T
+
S
]
C
B
=
[
T
]
C
B
+
[
S
]
C
B
2.
T
is invertible
⟹
[
T
−
1
]
B
C
=
(
[
T
]
C
B
)
−
1
3.
[
S
T
]
D
B
=
[
S
]
D
C
⋅
[
T
]
C
B
Exercise
S
,
S
′
are standard bases of
R
2
,
R
2
[
x
]
T
:
R
2
[
x
]
→
R
2
T
(
a
0
+
a
1
x
+
a
2
x
2
)
=
(
2
a
2
+
a
1
a
0
)
E
=
{
1
,
1
+
x
,
x
+
x
2
}
,
F
=
{
(
1
0
)
,
(
1
1
)
}
Find
[
T
]
S
′
S
Find
[
T
]
F
E
Solution:
S
=
{
1
,
x
,
x
2
}
,
S
′
=
{
(
1
0
)
,
(
0
1
)
}
T
(
1
)
=
(
0
1
)
,
T
(
x
)
=
(
1
0
)
,
T
(
x
2
)
=
(
2
0
)
⟹
[
T
]
S
′
S
=
(
0
1
2
1
0
0
)
[
T
]
F
E
=
[
I
]
F
S
′
⋅
[
T
]
S
′
S
⋅
[
I
]
S
E
[
I
]
F
S
′
=
(
1
−
1
0
1
)
[
T
]
F
E
=
(
1
−
1
0
1
)
(
0
1
2
1
0
0
)
(
1
1
0
0
1
1
0
0
1
)
=
(
1
−
1
0
1
)
(
0
1
3
1
1
0
)
=
(
−
1
0
3
1
1
0
)
[
T
]
F
E
[
v
]
E
=
[
T
(
v
)
]
F
[
k
e
r
(
T
)
]
B
=
N
(
[
T
]
C
B
)
[
I
m
(
T
)
]
C
=
C
(
[
T
]
C
B
)
Exercise
E
=
{
(
1
2
1
)
,
(
0
1
1
)
,
(
1
0
2
)
}
,
F
=
{
(
1
1
)
,
(
1
2
)
}
T
:
R
3
→
R
2
[
T
]
F
E
=
(
1
−
2
3
2
−
4
6
)
C
F
(
[
T
]
F
E
)
=
(
1
−
2
3
0
0
0
)
⟹
N
(
[
T
]
F
E
)
=
s
p
(
{
(
2
1
0
)
,
(
−
3
0
1
)
}
)
⟹
C
(
[
T
F
E
]
)
=
s
p
(
{
(
1
2
)
}
)
Exercise
V
=
R
n
over
R
T
:
V
→
V
A
∈
R
n
×
n
1.
∀
B
,
C
bases of
V
:
[
T
]
C
B
=
A
2.
∀
B
basis of
V
:
[
T
]
B
B
=
A
Solution for 1:
T
=
0
Solution for 2:
T
=
0
T
=
I
T
=
α
I
T
=
D
+
D
2
+
D
3
⟹
[
T
]
S
=
[
D
]
S
+
[
D
2
]
S
+
[
D
3
]
S
=
[
D
]
S
+
(
[
D
]
S
)
2
+
(
[
D
]
S
)
3
Exercise
T
:
R
3
→
R
3
T
(
(
x
y
z
)
)
=
(
x
x
+
y
x
+
y
+
z
)
A
=
(
1
1
0
2
1
0
1
0
1
)
B
basis of
R
3
1.
Find
[
T
]
S
S
2.
[
T
]
B
S
=
A
,
find
[
I
]
S
B
3.
Find
B
4.
Find basis
E
of
R
3
such that
[
T
]
E
E
is upper-triangle
Solution:
[
T
]
S
S
=
(
1
0
0
1
1
0
1
1
1
)
[
T
]
B
S
=
[
I
]
B
S
[
T
]
S
S
[
I
]
S
B
A
=
[
I
]
S
B
[
I
]
B
S
[
T
]
S
S
⟹
[
I
]
S
B
=
[
T
]
S
S
A
−
1
B
=
{
C
1
(
[
I
]
S
B
)
,
C
2
(
[
I
]
S
B
)
,
C
3
(
[
I
]
S
B
)
}
E
=
{
(
0
0
1
)
,
(
0
1
0
)
,
(
1
0
0
)
}
Exercise
V
is a vector space of dimension
2
over
R
T
:
V
→
V
T
2
=
−
I
1.
Prove:
∀
v
≠
0
∈
V
:
{
v
,
T
(
v
)
}
is a linear independence
2.
Find basis
E
of
V
such that:
[
T
]
E
E
=
(
0
1
−
1
0
)
Solution:
…
Exercise
T
:
R
2
→
R
2
T
(
(
x
y
)
)
=
(
x
+
2
y
x
+
y
)
If there exists basis
E
such that
[
T
]
E
E
is diagonal
Solution:
[
T
]
S
S
=
(
1
2
1
1
)
=
A
(
A
−
λ
I
)
v
=
0
A
−
λ
I
=
(
1
−
λ
2
1
1
−
λ
)
(
1
−
λ
2
1
1
−
λ
)
→
(
−
λ
1
+
λ
1
1
−
λ
)
→
λ
≠
0
(
1
−
1
−
λ
λ
0
1
−
λ
+
1
+
λ
λ
)