Linear-1 11

Linear-1 11

Properties of linear transformation matrix

1.[T+S]CB=[T]CB+[S]CB2.T is invertible[T1]BC=([T]CB)13.[ST]DB=[S]DC[T]CB

Exercise

S,S are standard bases of R2,R2[x]T:R2[x]R2T(a0+a1x+a2x2)=(2a2+a1a0)E={1,1+x,x+x2},F={(10),(11)}Find [T]SSFind [T]FESolution:S={1,x,x2},S={(10),(01)}T(1)=(01),T(x)=(10),T(x2)=(20)[T]SS=(012100)[T]FE=[I]FS[T]SS[I]SE[I]FS=(1101)[T]FE=(1101)(012100)(110011001)=(1101)(013110)=(103110)[T]FE[v]E=[T(v)]F
[ker(T)]B=N([T]CB)[Im(T)]C=C([T]CB)

Exercise

E={(121),(011),(102)},F={(11),(12)}T:R3R2[T]FE=(123246)CF([T]FE)=(123000)N([T]FE)=sp({(210),(301)})C([TFE])=sp({(12)})

Exercise

V=Rn over RT:VVARn×n1.B,C bases of V:[T]CB=A2.B basis of V:[T]BB=ASolution for 1:T=0Solution for 2:T=0T=IT=αI
T=D+D2+D3[T]S=[D]S+[D2]S+[D3]S=[D]S+([D]S)2+([D]S)3

Exercise

T:R3R3T((xyz))=(xx+yx+y+z)A=(110210101)B basis of R31.Find [T]SS2.[T]BS=A, find [I]SB3.Find B4.Find basis E of R3 such that [T]EE is upper-triangleSolution:[T]SS=(100110111)[T]BS=[I]BS[T]SS[I]SBA=[I]SB[I]BS[T]SS[I]SB=[T]SSA1B={C1([I]SB),C2([I]SB),C3([I]SB)}E={(001),(010),(100)}

Exercise

V is a vector space of dimension 2 over RT:VVT2=I1.Prove: v0V:{v,T(v)} is a linear independence2.Find basis E of V such that: [T]EE=(0110)Solution:

Exercise

T:R2R2T((xy))=(x+2yx+y)If there exists basis E such that [T]EE is diagonalSolution:[T]SS=(1211)=A(AλI)v=0AλI=(1λ211λ)(1λ211λ)(λ1+λ11λ)λ0(11λλ01λ+1+λλ)