Linear-1 12

Linear-1 12

Let A,BRm×nrank(A+B)=rank(A)+rank(B)C(A)C(B)={0}Proof:dim(C(A+B))=dim(C(A))+dim(C(B))=dim(C(A)+C(B))+dim(C(A)C(B))C(A+B)C(A)+C(B)dim(C(A+B))dim(C(A)+C(B))dim(C(A)+C(B))+dim(C(A)C(B))dim(C(A)+C(B))dim(C(A)C(B))0dim(C(A)C(B))=0C(A)C(B)={0}
Let V be a vector space of dimension nLet ARn×nProve or disprove: B,C bases of V:[I]CB=ADisproof:Let A be non-invertibleB,C:[I]CB is invertible[I]CBALet A be invertibleC(A) is a linear independenceB={C1(A),,Cn(A)} is a basis of VLet C=SV[I]CB=A
Let A0Rn×nrank(A)=rank(A2)Prove or disprove: A is invertibleDisproof:Let A=(1000)A2=Arank(A2)=rank(A)A is not invertible
Let V be a vector space over FLet T:VV be a linear transformation, T=T2Prove: Im(T)ker(T)=VProof:Let vIm(T)ker(T)T(v)=0,wV:T(w)=vT(w)=T(T(w))=T(v)=0v=0Im(T)ker(T)={0}dim(Im(T)+ker(T))=dim(Im(T))+dim(ker(T)))=dim(V)Im(T)+ker(T)Vdim(Im(T)+ker(T))=dim(V)Im(T)+ker(T)=VIm(T)ker(T)=V
Let V be a vector space over FLet T:VV be a linear transformation, T=T2Prove: ker(IT)ker(T)=VProof:Let vker(IT)(IT)(v)=I(v)T(v)=vT(v)=0T(v)=vvIm(T)ker(IT)Im(T)Let vIm(T)wV:T(w)=v(IT)(v)=vT(v)=T(w)T(T(w))=T(w)T(w)=0Im(T)ker(IT)Im(T)=ker(IT)ker(IT)ker(T)=V
Let A,BFn×nrank(A)=kProve: rank(B)<nkA+B is non-invertibleProof:rank(A+B)rank(A)+rank(B)<nk+k=nA+B is non-invertible
Let A,BFn×nrank(A)=kProve or disprove:A0 and non-invertibleB:rank(B)=nk:A+B is non-invertibleProof:A0i[1,n]:Ci(A)0(WLOG)Let Ci(B)=Ci(A)Let {v2,,Ci(B),,vnk} be a linear independenceLet nk columns of B be {v2,,Ci(B),,vnk}And k columns of B be 0rank(B)=nkAnd Ci(A+B)=0A+B is non-invertible
Let A,BFn×nrank(A)=kProve: B:rank(B)=nk:A+B is invertibleProof:Let {Ci1(A),Ci2(A),,Cik(A)} be a linear independenceLet Ci1(B)=Ci2(B)==Cik(B)=0For nk columns left:Let {v1,,vnk} be a linear independenceLet j[1,nk]:Cij(B)=vjCij(A)