Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 12
Linear-1 12
Let
A
,
B
∈
R
m
×
n
r
a
n
k
(
A
+
B
)
=
r
a
n
k
(
A
)
+
r
a
n
k
(
B
)
⟹
C
(
A
)
∩
C
(
B
)
=
{
0
}
Proof:
d
i
m
(
C
(
A
+
B
)
)
=
d
i
m
(
C
(
A
)
)
+
d
i
m
(
C
(
B
)
)
=
d
i
m
(
C
(
A
)
+
C
(
B
)
)
+
d
i
m
(
C
(
A
)
∩
C
(
B
)
)
C
(
A
+
B
)
⊆
C
(
A
)
+
C
(
B
)
⟹
d
i
m
(
C
(
A
+
B
)
)
≤
d
i
m
(
C
(
A
)
+
C
(
B
)
)
⟹
d
i
m
(
C
(
A
)
+
C
(
B
)
)
+
d
i
m
(
C
(
A
)
∩
C
(
B
)
)
≤
d
i
m
(
C
(
A
)
+
C
(
B
)
)
⟹
d
i
m
(
C
(
A
)
∩
C
(
B
)
)
≤
0
⟹
d
i
m
(
C
(
A
)
∩
C
(
B
)
)
=
0
⟹
C
(
A
)
∩
C
(
B
)
=
{
0
}
Let
V
be a vector space of dimension
n
Let
A
∈
R
n
×
n
Prove or disprove:
∃
B
,
C
bases of
V
:
[
I
]
C
B
=
A
Disproof:
Let
A
be non-invertible
∀
B
,
C
:
[
I
]
C
B
is invertible
⟹
[
I
]
C
B
≠
A
Let
A
be invertible
⟹
C
(
A
)
is a linear independence
⟹
B
=
{
C
1
(
A
)
,
…
,
C
n
(
A
)
}
is a basis of
V
Let
C
=
S
V
⟹
[
I
]
C
B
=
A
Let
A
≠
0
∈
R
n
×
n
r
a
n
k
(
A
)
=
r
a
n
k
(
A
2
)
Prove or disprove:
A
is invertible
Disproof:
Let
A
=
(
1
0
0
0
)
A
2
=
A
⟹
r
a
n
k
(
A
2
)
=
r
a
n
k
(
A
)
A
is not invertible
Let
V
be a vector space over
F
Let
T
:
V
→
V
be a linear transformation,
T
=
T
2
Prove:
I
m
(
T
)
⊕
k
e
r
(
T
)
=
V
Proof:
Let
v
∈
I
m
(
T
)
∩
k
e
r
(
T
)
⟹
T
(
v
)
=
0
,
∃
w
∈
V
:
T
(
w
)
=
v
T
(
w
)
=
T
(
T
(
w
)
)
=
T
(
v
)
=
0
⟹
v
=
0
⟹
I
m
(
T
)
∩
k
e
r
(
T
)
=
{
0
}
⟹
d
i
m
(
I
m
(
T
)
+
k
e
r
(
T
)
)
=
d
i
m
(
I
m
(
T
)
)
+
d
i
m
(
k
e
r
(
T
)
)
)
=
d
i
m
(
V
)
I
m
(
T
)
+
k
e
r
(
T
)
⊆
V
∧
d
i
m
(
I
m
(
T
)
+
k
e
r
(
T
)
)
=
d
i
m
(
V
)
⟹
I
m
(
T
)
+
k
e
r
(
T
)
=
V
⟹
I
m
(
T
)
⊕
k
e
r
(
T
)
=
V
Let
V
be a vector space over
F
Let
T
:
V
→
V
be a linear transformation,
T
=
T
2
Prove:
k
e
r
(
I
−
T
)
⊕
k
e
r
(
T
)
=
V
Proof:
Let
v
∈
k
e
r
(
I
−
T
)
(
I
−
T
)
(
v
)
=
I
(
v
)
−
T
(
v
)
=
v
−
T
(
v
)
=
0
⟹
T
(
v
)
=
v
⟹
v
∈
I
m
(
T
)
⟹
k
e
r
(
I
−
T
)
⊆
I
m
(
T
)
Let
v
∈
I
m
(
T
)
∃
w
∈
V
:
T
(
w
)
=
v
(
I
−
T
)
(
v
)
=
v
−
T
(
v
)
=
T
(
w
)
−
T
(
T
(
w
)
)
=
T
(
w
)
−
T
(
w
)
=
0
⟹
I
m
(
T
)
⊆
k
e
r
(
I
−
T
)
⟹
I
m
(
T
)
=
k
e
r
(
I
−
T
)
⟹
k
e
r
(
I
−
T
)
⊕
k
e
r
(
T
)
=
V
Let
A
,
B
∈
F
n
×
n
r
a
n
k
(
A
)
=
k
Prove:
r
a
n
k
(
B
)
<
n
−
k
⟹
A
+
B
is non-invertible
Proof:
r
a
n
k
(
A
+
B
)
≤
r
a
n
k
(
A
)
+
r
a
n
k
(
B
)
<
n
−
k
+
k
=
n
⟹
A
+
B
is non-invertible
Let
A
,
B
∈
F
n
×
n
r
a
n
k
(
A
)
=
k
Prove or disprove:
A
≠
0
and non-invertible
⟹
∃
B
:
r
a
n
k
(
B
)
=
n
−
k
:
A
+
B
is non-invertible
Proof:
A
≠
0
⟹
∃
i
∈
[
1
,
n
]
:
C
i
(
A
)
≠
0
(
W
L
O
G
)
Let
C
i
(
B
)
=
−
C
i
(
A
)
Let
{
v
2
,
…
,
C
i
(
B
)
,
…
,
v
n
−
k
}
be a linear independence
Let
n
−
k
columns of
B
be
{
v
2
,
…
,
C
i
(
B
)
,
…
,
v
n
−
k
}
And
k
columns of
B
be
0
⟹
r
a
n
k
(
B
)
=
n
−
k
And
C
i
(
A
+
B
)
=
0
⟹
A
+
B
is non-invertible
Let
A
,
B
∈
F
n
×
n
r
a
n
k
(
A
)
=
k
Prove:
∃
B
:
r
a
n
k
(
B
)
=
n
−
k
:
A
+
B
is invertible
Proof:
Let
{
C
i
1
(
A
)
,
C
i
2
(
A
)
,
…
,
C
i
k
(
A
)
}
be a linear independence
Let
C
i
1
(
B
)
=
C
i
2
(
B
)
=
⋯
=
C
i
k
(
B
)
=
0
For
n
−
k
columns left:
Let
{
v
1
,
…
,
v
n
−
k
}
be a linear independence
Let
∀
j
∈
[
1
,
n
−
k
]
:
C
i
j
(
B
)
=
v
j
−
C
i
j
(
A
)