Linear-1 3

Linear-1 3

Matrix addition

AFnm;BFnmC=A±BFnmCij=Aij±Bij

Matrix multiplication

AFmn;BFnpABFmpABij=k=1naikbkj

Properties of matrix multiplication

(AB)C=A(BC)(A+B)C=AC+BCC(A+B)=CA+CBα(AB)=(αA)B=A(αB)

Special matrices

Identity matrix

In={1:i=j0:ij

Scalar matrix

αI={α:i=j0:ij

Diagonal matrix

D={dii:i=j0:ij

Upper triangle matrix

U={aij:ij0:i>j

Lower triangle matrix

L={aij:ij0:i<j

Exercise

AFmnProve: AIn=ImA=A(AIn)ij=k=1nAikIkj=AijIjj=Aij

Exercise

A,BFnn;A,B - upper-triangle matricesProve: AB - upper-triangle matrixi>j:(AB)ij=k=1nAikBkj=k=1i1AikBkj+k=inAikBkjk<i:Aik=0k=1i1AikBkj=0ki:ki>jBkj=0k=inAikBkj=0i>j:(AB)ij=0+0=0AB - upper-triangle matrix

Matrix trace

AFnntr(A)=i=1nAii

Properties of matrix trace

tr(A+B)=tr(A)+tr(B)tr(αA)=αtr(A)tr(AB)=tr(BA)

Exercise

AFmn;BFnmProve: tr(AB)=tr(BA)tr(AB)=i=1m(AB)ii=i=1m(j=1nAijBji)tr(BA)=j=1n(BA)jj=j=1n(i=1mBjiAij)=j=1n(i=1mAijBji)==i=1m(j=1nAijBji)=tr(AB)

Matrix transposition

AFnmATFmn(AT)ij=Aji

Properties of transposition

(AT)T=A(A+B)T=AT+BTAFmn:AAT,ATAFkk(AB)T=BTATAFmn:tr(AAT)=0A=0AFnn:tr(AT)=tr(A)

Exercise

Prove: AFmn:tr(AAT)=0A=01. A=0AAT=0tr(AAT)=02. tr(AAT)=i=1m(j=1nAijAjiT)=i=1m(j=1nAij2)3. tr(AAT)=0i[1,m],j[1,n]:Aij2=0Aij=0A=0

Matrix symmetry

AFnnA=ATA is a symmetric matrixA=ATA is an anti-symmetric matrix

Exercise

Prove that there are no matrices A,BRnn such as ABBA=Itr(I)=ntr(ABBA)=tr(AB)tr(BA)=tr(AB)tr(AB)=0I=ABBAtr(I)=tr(ABBA)n=0There are no such matrices A,B