Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 5
Linear-1 5
A
,
B
∈
R
n
×
n
A
−
A
2
B
−
2
I
=
0
3
B
A
2
+
A
2
−
3
A
=
0
Prove:
∃
A
−
1
,
B
−
1
Proof:
A
−
A
2
B
=
2
I
A
(
I
−
A
B
)
=
2
I
∣:
2
A
(
1
2
I
−
1
2
A
B
)
⏟
A
−
1
=
I
3
B
A
2
+
A
2
−
3
A
=
0
∣
⋅
[
…
]
A
−
1
3
B
A
+
A
−
3
I
=
0
(
3
B
+
I
)
A
=
3
I
∣:
3
(
B
+
1
3
I
)
⏟
A
−
1
A
=
I
B
+
1
3
I
=
1
2
I
−
1
2
A
B
B
+
1
2
A
B
=
1
6
I
(
I
+
1
2
A
)
B
=
1
6
I
∣
⋅
6
(
6
I
+
3
A
)
⏟
B
−
1
B
=
I
PLU decomposition
A
∈
R
n
×
n
∃
P
−
permutation matrix (row-switching)
∃
L
−
lower-triangle matrix
∃
U
−
upper-triangle matrix
Such that
P
A
=
L
U
(
A
I
I
)
→
(
U
L
P
)
1.
Biggest element in the column must be on the main diagonal
2.
Elementary transformations
2.1
α
R
i
−
forbidden
2.2
R
i
↔
R
j
,
U
and
P
are affected as usual
,
L
is only affected at the main diagonal
2.3
α
R
i
=
R
i
+
α
R
j
−
U
is affected as usual
,
P
is not affected
,
L
i
j
=
−
α
Example
(
6
−
2
0
1
0
0
1
0
0
9
−
1
1
0
1
0
0
1
0
3
7
5
0
0
1
0
0
1
)
→
R
1
↔
R
2
(
9
−
1
1
1
0
0
0
1
0
6
−
2
0
0
1
0
1
0
0
3
7
5
0
0
1
0
0
1
)
→
R
3
−
1
3
R
1
R
2
−
2
3
R
1
(
9
−
1
1
1
0
0
0
1
0
0
−
4
3
−
2
3
2
3
1
0
1
0
0
0
22
3
14
3
1
3
0
1
0
0
1
)
→
R
2
↔
R
3
(
9
−
1
1
1
0
0
0
1
0
0
22
3
14
3
1
3
1
0
0
0
1
0
−
4
3
−
2
3
2
3
0
1
1
0
0
)
→
R
3
+
2
11
R
2
(
9
−
1
1
1
0
0
0
1
0
0
22
3
14
3
1
3
1
0
0
0
1
0
0
2
11
2
3
−
2
11
1
1
0
0
)
Exercise
P
=
(
0
1
0
0
0
1
1
0
0
)
,
L
=
(
1
0
0
2
1
0
−
1
3
1
)
,
U
=
(
3
1
−
1
0
2
1
2
0
0
1
)
Find solution(s) to the system:
A
x
=
(
1
2
3
)
A
x
=
(
1
2
3
)
P
A
x
=
P
⋅
(
1
2
3
)
=
(
2
3
1
)
L
U
x
=
(
2
3
1
)
U
x
=
U
⋅
(
x
y
z
)
=
(
x
^
y
^
z
^
)
L
⋅
(
x
^
y
^
z
^
)
=
(
2
3
1
)
x
^
=
2
,
y
^
=
−
1
,
z
^
=
6
U
⋅
(
x
y
z
)
=
(
2
−
1
6
)
z
=
6
,
y
=
−
2
,
x
=
10
3
A
∈
R
n
×
n
Calculate
P
L
U
decomposition of
A
If
P
=
I
,
then
A
=
L
U
Vector spaces
V
is called vector space over field
F
if ...(was in lecture)
Examples
1.
V
=
F
n
=
{
(
a
1
a
2
…
a
n
)
T
|
∀
i
∈
[
1
,
n
]
:
a
i
∈
F
}
2.
V
=
F
m
×
n
=
{
A
|
∀
i
∈
[
1
,
m
]
,
j
∈
[
1
,
n
]
:
A
i
j
∈
F
}
3.
V
=
F
n
[
x
]
=
{
∑
i
=
0
n
a
i
⋅
x
i
|
∀
i
∈
[
0
,
n
]
:
a
i
∈
F
}
4.
V
=
F
[
x
]
=
{
∑
i
=
0
∞
a
i
⋅
x
i
|
∀
i
∈
{
0
}
∪
N
:
a
i
∈
F
}
5.
V
=
{
f
|
f
−
function
}
…
Vector subspaces
Given:
V
−
vector space over
F
W
is called vector subspace of
V
if
W
is a vector space and
W
⊆
V
Exercise
V
=
R
2
W
=
{
(
x
y
)
|
x
≥
0
}
Not a subspace of
V
…
I’m lazy bro
Exercise
V
=
F
n
×
n
W
1
=
{
A
|
A
=
A
T
}
−
subspace of
V
W
2
=
{
A
|
A
=
−
A
T
}
−
subspace of
V
W
3
=
{
A
|
A
=
±
A
T
}
−
not a subspace of
V
…
I’m lazy bro
Exercise
V
=
R
3
[
x
]
W
=
{
P
(
x
)
|
P
(
1
)
=
0
∧
P
(
2
)
=
P
(
0
)
}
−
subspace of
V
…
I’m lazy bro