Linear-1 5

Linear-1 5

A,BRn×nAA2B2I=03BA2+A23A=0Prove: A1,B1Proof:AA2B=2IA(IAB)=2I∣:2A(12I12AB)A1=I3BA2+A23A=0[]A13BA+A3I=0(3B+I)A=3I∣:3(B+13I)A1A=IB+13I=12I12ABB+12AB=16I(I+12A)B=16I6(6I+3A)B1B=I

PLU decomposition

ARn×nP permutation matrix (row-switching)L lower-triangle matrixUupper-triangle matrixSuch that PA=LU
(AII)(ULP)1.Biggest element in the column must be on the main diagonal2.Elementary transformations2.1αRiforbidden2.2RiRj,U and P are affected as usual,L is only affected at the main diagonal2.3αRi=Ri+αRjU is affected as usual,P is not affected,Lij=α

Example

(620100100911010010375001001)R1R2(911100010620010100375001001)R313R1R223R1(91110001004323231010002231431301001)R2R3(91110001002231431310001043232301100)R3+211R2(9111000100223143131000100211232111100)

Exercise

P=(010001100),L=(100210131),U=(3110212001)Find solution(s) to the system: Ax=(123)Ax=(123)PAx=P(123)=(231)LUx=(231)Ux=U(xyz)=(x^y^z^)L(x^y^z^)=(231)x^=2,y^=1,z^=6U(xyz)=(216)z=6,y=2,x=103
ARn×nCalculate PLU decomposition of AIf P=I, then A=LU

Vector spaces

V is called vector space over field F if ...(was in lecture)

Examples

1.V=Fn={(a1a2an)T|i[1,n]:aiF}2.V=Fm×n={A|i[1,m],j[1,n]:AijF}3.V=Fn[x]={i=0naixi|i[0,n]:aiF}4.V=F[x]={i=0aixi|i{0}N:aiF}5.V={f|ffunction}

Vector subspaces

Given: V vector space over FW is called vector subspace of V if W is a vector space and WV

Exercise

V=R2W={(xy)|x0}Not a subspace of VI’m lazy bro

Exercise

V=Fn×nW1={A|A=AT}subspace of VW2={A|A=AT}subspace of VW3={A|A=±AT}not a subspace of VI’m lazy bro

Exercise

V=R3[x]W={P(x)|P(1)=0P(2)=P(0)}subspace of VI’m lazy bro