Linear-1 6

Linear-1 6

V is a vector spaceU,W are vector subspaces of VUW is a vector subspace of VProved on lectures

Exercise

V=R2[x]U={p(x)V|p(2)=0}W={p(x)V|p(x)=xp(x)}Show: UW is a vector subspaceSolution:U={a0+a1x+a2x2|a0+2a1+4a2=0}W={a0+a1x+a2x2|a0+a1x+a22=x(a1+2a2x)=a1x+2a2x2}=={a0+a1x+a2x2|a0a2x2=0}={a0+a1x+a2x2|a0=0a2=0}UW={a0+a1x+a2x2|a0=0a2=0a1=0}={0}UW is a vector subspace of V
V is a vector spaceU,W are vector subspaces of VU+W={u+w|uU,wW} is a vector subspace of VProved in lectures

Exercise

V=Rn×nU={AV|A=AT}W={AV|A is a diagonal matrix}Show: U+W is a vector subspace of VSolution:WUU+W=UU+W is a vector subspace of V

Exercise

V=R2×2U={AV|A=AT}W={AV|A is an upper-triangle matrix}Show: U+W=VSolution:(abcd)=(1cc1)+(a1bc0d1)AV:A=U1+W1U+WVU+WU+W is a vector subspace of VU+W=V
V is a vector spaceU,W are vector subspaces of VUW=VU+W=VUW={0}Proved in lectures

Exercise

V=R2×2U={AV|A=αI}W={AV|tr(A)=0}Show: UW=VSolution:Let AVA=(abcd)=(a+d200a+d2)=a+d2I+(ad2bcda2)AV:A=U1+W1VU+WV=U+WUW={AV|A=αItr(A)=0}={0}V=UW
V is a vector space over F,SVS={v1,v2,,vn}Linear combination of S is a sum:α1v1+α2v2++αnvnSometimes denoted as: (S,{α1,α2,,αn})sp(S) is called span of S and is a set of all linear combinations of Ssp(S)={α1v1++αnvn|α1,α2,,αnFv1,v2,,vnS}

Exercise

V=Rn×nDefine: sp(S={(1000),(0200),(0004)})Solution:sp(S)={(α2β04γ)|α,β,γR}

Exercise

V=R2[x]83x+x2?sp(S={1+x2,x+x2,3+x+2x2})Solution:{α+3γ=8β+γ=3α+β+2γ=1{α+3γ=8β+γ=3βγ=7{α+3γ=8β+γ=32γ=4{α=2β=5γ=2(v1v2v3p11038x0113x21121)83x+x2sp(S)

Exercise

V=R3W=sp({(120),(231),(011)})Show: W={(xyz)|2xy+z=0}Solution:W={(xyz)|α,β,γ:α(120)+β(231)+γ(011)=(xyz)}=={(xyz)|(120x231y011z) has a solution}=={(xyz)|(120x011y2x0002xy+z) has a solution}=={(xyz)|2xy+z=0}