Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 7
Linear-1 7
Let
V
be a vector space
S
,
T
⊆
V
−
vector subspaces of
V
S
⊆
s
p
(
T
)
∧
T
⊆
s
p
(
S
)
⟺
s
p
(
S
)
=
s
p
(
T
)
Proof:
Let
S
⊆
s
p
(
T
)
∧
T
⊆
s
p
(
S
)
S
⊆
s
p
(
T
)
⟹
s
p
(
S
)
⊆
s
p
(
s
p
(
T
)
)
=
s
p
(
T
)
T
⊆
s
p
(
S
)
⟹
s
p
(
T
)
⊆
s
p
(
s
p
(
S
)
)
=
s
p
(
S
)
s
p
(
S
)
⊆
s
p
(
T
)
∧
s
p
(
T
)
⊆
s
p
(
S
)
⟹
s
p
(
S
)
=
s
p
(
T
)
Let
s
p
(
S
)
=
s
p
(
T
)
T
⊆
s
p
(
T
)
=
s
p
(
S
)
S
⊆
s
p
(
S
)
=
s
p
(
S
)
S
=
{
α
x
−
1
,
4
x
2
−
x
−
2
,
15
x
2
}
α
(
α
x
−
1
)
+
β
(
4
x
2
−
x
−
2
)
+
γ
(
15
x
2
)
=
0
(
α
−
2
β
)
1
+
(
2
α
−
β
)
x
+
(
4
β
+
15
γ
)
x
2
=
0
(
1
−
2
0
0
2
−
1
0
0
0
4
15
0
)
→
(
1
−
2
0
0
0
−
5
0
0
0
4
15
0
)
→
(
1
−
2
0
0
0
1
0
0
0
0
15
0
)
⟹
S
is a linear independence
S
=
{
v
1
,
…
,
v
n
}
⊆
V
T
=
{
v
1
+
v
1
,
…
,
v
n
+
v
1
}
⊆
V
S
is a linear independence
⟺
T
is a linear independence
Proof:
Let
S
be a linear independence
∑
i
=
1
n
α
i
(
v
i
+
v
1
)
=
∑
i
=
1
n
α
i
v
i
+
∑
i
=
1
n
α
i
v
1
=
(
α
1
+
∑
i
=
1
n
α
i
)
v
1
+
∑
i
=
2
n
α
i
v
i
=
0
This is a linear combination of
S
⟹
{
α
1
+
∑
i
=
1
n
α
i
=
0
α
2
=
0
…
α
n
=
0
⟹
2
α
1
=
0
⟹
α
1
=
0
(
over
R
)
⟹
T
is a linear independence
Let
T
be a linear independence
∑
i
=
1
n
α
i
v
i
=
∑
i
=
1
n
α
i
(
v
i
+
v
1
−
v
1
)
=
∑
i
=
1
n
α
i
(
v
i
+
v
1
)
+
∑
i
=
1
n
−
α
i
v
1
=
=
(
α
1
−
∑
i
=
2
n
α
i
)
2
(
v
1
+
v
1
)
+
∑
i
=
2
n
α
i
(
v
i
+
v
1
)
=
0
⟹
{
(
α
1
−
∑
i
=
2
n
α
i
)
2
=
0
α
2
=
0
…
α
n
=
0
⟹
α
1
2
=
0
⟹
α
1
=
0
⟹
S
is a linear independence
V
=
R
n
x
n
A
∈
V
1.
∃
A
−
1
⟹
⧸
⟹
{
A
,
A
2
}
is a linear independence
A
=
I
,
∃
A
−
1
=
I
,
A
2
=
I
⟹
{
A
,
A
2
}
is a linear dependence
2.
∃
A
−
1
⟸
⧸
⟸
{
A
,
A
2
}
is a linear independence
A
=
(
0
1
0
0
0
1
0
0
0
)
,
A
2
=
(
0
0
1
0
0
0
0
0
0
)
⟹
{
A
,
A
2
}
is a linear dependence
,
∄
A
−
1
V
=
R
2
[
x
]
S
=
{
1
+
x
2
,
x
,
x
+
x
2
}
S
′
=
{
(
1
0
1
)
,
(
0
1
0
)
,
(
0
1
1
)
}
(
x
y
z
)
=
α
s
1
′
+
β
s
2
′
+
γ
s
3
′
(
1
0
0
x
0
1
1
y
1
0
1
z
)
→
(
1
0
0
x
0
1
1
y
0
0
1
z
−
x
)
→
(
1
0
0
x
0
1
0
x
+
y
−
z
0
0
1
z
−
x
)
⟹
{
s
p
(
S
)
=
R
3
S
′
is a linear independence
⟹
S
′
is a basis of
R
3
⟹
S
is a basis of
R
2
[
x
]
V
=
R
n
×
n
B
=
(
1
2
0
0
)
W
=
{
A
∈
V
|
A
B
=
B
A
}
W
is vector subspace of
V
?
(
a
b
c
d
)
⋅
(
1
2
0
0
)
=
(
1
2
0
0
)
⋅
(
a
b
c
d
)
(
a
2
a
c
2
c
)
=
(
a
+
2
c
b
+
2
d
0
0
)
{
c
=
0
2
a
−
b
−
2
d
=
0
(
1
−
1
2
0
−
1
0
0
1
0
)
⟹
{
(
b
2
+
d
b
0
d
)
|
∀
b
,
d
∈
R
}
=
W
⟹
W
=
s
p
(
{
(
1
2
1
0
0
)
,
(
1
0
0
1
)
}
)