Linear-1 7

Linear-1 7

Let V be a vector spaceS,TV vector subspaces of VSsp(T)Tsp(S)sp(S)=sp(T)Proof:Let Ssp(T)Tsp(S)Ssp(T)sp(S)sp(sp(T))=sp(T)Tsp(S)sp(T)sp(sp(S))=sp(S)sp(S)sp(T)sp(T)sp(S)sp(S)=sp(T)Let sp(S)=sp(T)Tsp(T)=sp(S)Ssp(S)=sp(S)
S={αx1,4x2x2,15x2}α(αx1)+β(4x2x2)+γ(15x2)=0(α2β)1+(2αβ)x+(4β+15γ)x2=0(1200210004150)(1200050004150)(1200010000150)S is a linear independence
S={v1,,vn}VT={v1+v1,,vn+v1}VS is a linear independenceT is a linear independenceProof:Let S be a linear independencei=1nαi(vi+v1)=i=1nαivi+i=1nαiv1=(α1+i=1nαi)v1+i=2nαivi=0This is a linear combination of S{α1+i=1nαi=0α2=0αn=02α1=0α1=0 (over R)T is a linear independenceLet T be a linear independencei=1nαivi=i=1nαi(vi+v1v1)=i=1nαi(vi+v1)+i=1nαiv1==(α1i=2nαi)2(v1+v1)+i=2nαi(vi+v1)=0{(α1i=2nαi)2=0α2=0αn=0α12=0α1=0S is a linear independence
V=RnxnAV1.A1{A,A2} is a linear independenceA=I,A1=I,A2=I{A,A2} is a linear dependence2.A1{A,A2} is a linear independenceA=(010001000),A2=(001000000){A,A2} is a linear dependence,A1
V=R2[x]S={1+x2,x,x+x2}S={(101),(010),(011)}(xyz)=αs1+βs2+γs3(100x011y101z)(100x011y001zx)(100x010x+yz001zx){sp(S)=R3S is a linear independenceS is a basis of R3S is a basis of R2[x]
V=Rn×nB=(1200)W={AV|AB=BA}W is vector subspace of V?(abcd)(1200)=(1200)(abcd)(a2ac2c)=(a+2cb+2d00){c=02ab2d=0(112010010){(b2+db0d)|b,dR}=WW=sp({(12100),(1001)})