Linear-1 8

Linear-1 8

Exercise

B={1+x,3+x2,x}Prove: B is basis of R2[x]Proof:α(1+x)+β(3+x2)+γx=0{α+3β=0α+γ=0β=0{α=0β=0γ=0B is a linear independencea+bx+cx2=α(1+x)+β(3+x2)+γx(130a101b010c){α=a3cβ=cγ=ba+3csp(B)=R2[x]

"Useful" lemma

U,WV vector subspaces of VUWdim(U)=dim(W)U=W

Exercise

U,WV vector subspaces of Vdim(U+W)=dim(UW)+1UWWWProof:Let dim(U+W)=dim(UW)+1Let UWWUUWWWUwW:wUwUWUWWUWWWU+WUWuU:uWu=u+0uU+WWU+WWU+Wdim(U+W)>dim(W)dim(U+W)dim(W)+1dim(UW)+2dim(U+W)>dim(UW)+1Condtradiction!

Exercise

U,WV vector subspaces of Vdim(V)<dim(U)+dim(W)UW{0}Proof:Let UW={0}UW=Vdim(V)=dim(U)+dim(V) Contradiction!