Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 8
Linear-1 8
Exercise
B
=
{
1
+
x
,
3
+
x
2
,
x
}
Prove:
B
is basis of
R
2
[
x
]
Proof:
α
(
1
+
x
)
+
β
(
3
+
x
2
)
+
γ
x
=
0
{
α
+
3
β
=
0
α
+
γ
=
0
β
=
0
⟹
{
α
=
0
β
=
0
γ
=
0
⟹
B
is a linear independence
a
+
b
x
+
c
x
2
=
α
(
1
+
x
)
+
β
(
3
+
x
2
)
+
γ
x
(
1
3
0
a
1
0
1
b
0
1
0
c
)
⟹
{
α
=
a
−
3
c
β
=
c
γ
=
b
−
a
+
3
c
⟹
s
p
(
B
)
=
R
2
[
x
]
"Useful" lemma
U
,
W
⊆
V
−
vector subspaces of
V
U
⊆
W
∧
d
i
m
(
U
)
=
d
i
m
(
W
)
⟹
U
=
W
Exercise
U
,
W
⊆
V
−
vector subspaces of
V
d
i
m
(
U
+
W
)
=
d
i
m
(
U
∩
W
)
+
1
⟹
U
⊆
W
∨
W
⊆
W
Proof:
Let
d
i
m
(
U
+
W
)
=
d
i
m
(
U
∩
W
)
+
1
Let
U
⊈
W
∧
W
⊈
U
U
∩
W
⊆
W
W
⊈
U
⟹
∃
w
∈
W
:
w
∉
U
⟹
w
∉
U
∩
W
⟹
U
∩
W
≠
W
⟹
U
∩
W
⊂
W
W
⊆
U
+
W
U
⊈
W
⟹
∃
u
∈
U
:
u
∉
W
u
=
u
+
0
⟹
u
∈
U
+
W
⟹
W
≠
U
+
W
⟹
W
⊂
U
+
W
d
i
m
(
U
+
W
)
>
d
i
m
(
W
)
⟹
d
i
m
(
U
+
W
)
≥
d
i
m
(
W
)
+
1
≥
d
i
m
(
U
∩
W
)
+
2
⟹
d
i
m
(
U
+
W
)
>
d
i
m
(
U
∩
W
)
+
1
−
Condtradiction!
Exercise
U
,
W
⊆
V
−
vector subspaces of
V
d
i
m
(
V
)
<
d
i
m
(
U
)
+
d
i
m
(
W
)
⟹
U
∩
W
≠
∅
{
0
}
Proof:
Let
U
∩
W
=
{
0
}
⟹
U
⊕
W
=
V
⟹
d
i
m
(
V
)
=
d
i
m
(
U
)
+
d
i
m
(
V
)
−
Contradiction!