Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 9
Linear-1 9
Matrix spaces
R
(
A
)
=
s
p
(
{
R
1
(
A
)
,
R
2
(
A
)
,
…
,
R
m
(
A
)
}
)
⊆
F
n
C
(
A
)
=
s
p
(
{
C
1
(
A
)
,
C
2
(
A
)
,
…
,
C
n
(
A
)
}
)
⊆
F
m
N
(
A
)
=
{
x
∈
F
n
|
A
x
=
0
}
⊆
F
n
Exercise
Find bases of
R
(
A
)
,
C
(
A
)
,
N
(
A
)
A
=
(
1
2
3
4
5
6
7
8
9
1
2
3
)
A
→
⋯
→
(
1
2
3
0
1
2
0
0
0
0
0
0
)
⟹
R
(
A
)
=
s
p
(
{
(
1
2
3
)
,
(
0
1
2
)
}
)
⟹
C
(
A
)
=
s
p
(
{
(
1
4
7
1
)
,
(
2
5
8
2
)
}
)
⟹
N
(
A
)
=
{
x
∈
R
3
|
z
=
t
y
=
−
2
t
x
=
t
}
=
s
p
(
{
(
1
−
2
1
)
}
)
Exercise
Prove or disprove:
∃
A
∈
F
11
×
11
:
R
(
A
)
⊕
C
(
A
)
=
F
11
Disproof:
Let
A
∈
F
11
×
11
:
R
(
A
)
⊕
C
(
A
)
=
F
11
11
=
d
i
m
(
F
11
)
=
d
i
m
(
R
(
A
)
⊕
C
(
A
)
)
=
=
d
i
m
(
R
(
A
)
)
⏟
r
a
n
k
(
A
)
+
d
i
m
(
C
(
A
)
)
⏟
r
a
n
k
(
A
)
−
d
i
m
(
R
(
A
)
∩
C
(
A
)
)
⏟
=
0
⟹
2
r
a
n
k
(
A
)
=
11
,
r
a
n
k
(
A
)
∈
N
0
−
Contradiction!
Exercise
A
∈
F
n
×
n
Prove:
r
a
n
k
(
A
)
=
r
a
n
k
(
A
2
)
⟺
∃
B
∈
F
n
×
n
:
A
=
A
2
B
Proof:
Let
∃
B
∈
F
n
×
n
:
A
=
A
2
B
r
a
n
k
(
A
2
)
=
r
a
n
k
(
A
A
)
≤
r
a
n
k
(
A
)
r
a
n
k
(
A
)
=
r
a
n
k
(
A
2
B
)
≤
r
a
n
k
(
A
2
)
≤
r
a
n
k
(
A
)
⟹
r
a
n
k
(
A
)
=
r
a
n
k
(
A
2
)
Let
r
a
n
k
(
A
)
=
r
a
n
k
(
A
2
)
C
(
A
2
)
=
C
(
A
A
)
⊆
C
(
A
)
d
i
m
(
C
(
A
2
)
)
=
r
a
n
k
(
A
2
)
=
r
a
n
k
(
A
)
=
d
i
m
(
C
(
A
)
)
⟹
C
(
A
2
)
=
C
(
A
)
C
(
A
)
⊆
C
(
A
2
)
⟹
∀
i
∈
[
1
,
n
]
:
C
i
(
A
)
∈
C
(
A
2
)
C
1
(
A
)
=
α
1
1
C
1
(
A
2
)
+
⋯
+
α
n
1
C
n
(
A
2
)
C
2
(
A
)
=
α
1
2
C
1
(
A
2
)
+
⋯
+
α
n
2
C
n
(
A
2
)
…
C
n
(
A
)
=
α
1
n
C
1
(
A
2
)
+
⋯
+
α
n
n
C
n
(
A
2
)
B
=
(
α
1
1
…
α
n
1
⋮
⋱
⋮
α
n
n
…
α
n
n
)
C
j
(
A
2
B
)
=
∑
i
=
1
n
C
j
(
A
2
)
B
i
j
=
∑
i
=
1
n
C
j
(
A
2
)
α
i
j
=
C
j
(
A
)