Linear-1 9

Linear-1 9

Matrix spaces

R(A)=sp({R1(A),R2(A),,Rm(A)})FnC(A)=sp({C1(A),C2(A),,Cn(A)})FmN(A)={xFn|Ax=0}Fn

Exercise

Find bases of R(A),C(A),N(A)A=(123456789123)A(123012000000)R(A)=sp({(123),(012)})C(A)=sp({(1471),(2582)})N(A)={xR3|z=ty=2tx=t}=sp({(121)})

Exercise

Prove or disprove: AF11×11:R(A)C(A)=F11Disproof:Let AF11×11:R(A)C(A)=F1111=dim(F11)=dim(R(A)C(A))==dim(R(A))rank(A)+dim(C(A))rank(A)dim(R(A)C(A))=02rank(A)=11,rank(A)N0Contradiction!

Exercise

AFn×nProve: rank(A)=rank(A2)BFn×n:A=A2BProof:Let BFn×n:A=A2Brank(A2)=rank(AA)rank(A)rank(A)=rank(A2B)rank(A2)rank(A)rank(A)=rank(A2)Let rank(A)=rank(A2)C(A2)=C(AA)C(A)dim(C(A2))=rank(A2)=rank(A)=dim(C(A))C(A2)=C(A)C(A)C(A2)i[1,n]:Ci(A)C(A2)C1(A)=α11C1(A2)++αn1Cn(A2)C2(A)=α12C1(A2)++αn2Cn(A2)Cn(A)=α1nC1(A2)++αnnCn(A2)B=(α11αn1αnnαnn)Cj(A2B)=i=1nCj(A2)Bij=i=1nCj(A2)αij=Cj(A)