Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-2 1
det
:
F
n
×
n
→
F
det
(
A
)
=
|
A
|
=
∑
σ
∈
S
n
s
g
n
(
σ
)
∏
i
=
1
n
a
i
σ
(
i
)
For example:
|
a
11
a
12
a
21
a
22
|
=
a
11
a
22
−
a
12
a
21
Let
i
∈
[
1
,
n
]
det
(
A
)
=
|
A
|
=
∑
j
=
1
n
(
−
1
)
i
+
j
a
i
j
|
M
i
j
(
A
)
|
Let
j
∈
[
1
,
n
]
det
(
A
)
=
|
A
|
=
∑
i
=
1
n
(
−
1
)
i
+
j
a
i
j
|
M
i
j
(
A
)
|
For example:
|
1
0
2
3
1
0
5
7
6
|
=
1
|
1
0
7
6
|
−
0
|
3
0
5
6
|
+
2
|
3
1
5
7
|
=
6
+
32
=
38
Exercises
Let
A
,
B
∈
R
n
×
n
|
A
|
=
7
,
|
B
|
=
4
C
=
A
T
(
B
−
1
)
5
Find
|
C
|
Solution:
|
C
|
=
|
A
T
(
B
−
1
)
5
|
=
|
A
T
|
⋅
|
(
B
−
1
)
5
|
=
|
A
|
⋅
|
B
−
1
|
5
=
|
A
|
⋅
|
B
|
−
5
=
7
⋅
1
4
5
=
7
4
5
Let
n
∈
N
be odd
Let
A
∈
R
n
×
n
be anti-symmetric
Prove:
A
is non-invertible
Proof:
A
=
−
A
T
|
A
|
=
|
−
A
T
|
=
(
−
1
)
n
|
A
T
|
=
−
|
A
|
⟹
|
A
|
=
0
⟹
A
is non-invertible
|
a
b
c
d
e
f
g
h
i
|
=
2
Find
|
i
−
4
c
f
2
i
+
f
g
−
4
a
d
2
g
+
d
h
−
4
b
e
2
h
+
e
|
=
|
i
−
4
c
f
2
i
g
−
4
a
d
2
g
h
−
4
b
e
2
h
|
=
2
|
i
−
4
c
f
i
g
−
4
a
d
g
h
−
4
b
e
h
|
=
=
2
|
−
4
c
f
i
−
4
a
d
g
−
4
b
e
h
|
=
−
8
|
c
f
i
a
d
g
b
e
h
|
=
−
8
|
c
a
b
f
d
e
i
g
h
|
=
8
|
a
c
b
d
f
e
g
i
h
|
=
−
8
|
a
b
c
d
e
f
g
h
i
|
=
−
16
Let
A
=
{
2
i
=
j
−
1
i
=
j
+
1
−
1
i
=
j
−
1
0
otherwise
Find
|
A
|
Let
A
n
=
A
∈
R
n
×
n
|
A
n
|
=
2
⋅
|
A
n
−
1
|
−
(
−
1
)
|
M
12
(
A
n
)
|
=
=
2
|
A
n
−
1
|
+
(
−
1
)
|
A
n
−
2
|
=
2
|
A
n
−
1
|
−
|
A
n
−
2
|
|
A
1
|
=
2
|
A
2
|
=
3
|
A
3
|
=
4
2
|
A
n
−
1
|
−
|
A
n
−
2
|
=
2
(
2
A
n
−
2
−
A
n
−
3
)
−
A
n
−
2
=
3
A
n
−
2
−
2
A
n
−
3
=
4
A
n
−
3
−
3
A
n
−
4
=
⋯
=
=
(
n
−
1
)
A
2
−
(
n
−
2
)
A
1
=
3
n
−
3
−
2
n
+
4
=
n
+
1
Let
A
=
{
2
i
i
≠
j
0
i
=
j
Let
A
′
=
{
1
i
≠
j
0
i
=
j
|
A
|
=
(
2
n
)
!
!
|
A
′
|
=
2
n
n
!
|
A
′
|
|
A
′
|
=
|
0
1
…
…
1
1
0
1
…
1
1
1
⋱
⋱
⋮
⋮
⋮
⋱
⋱
1
1
1
…
1
0
|
=
∀
i
∈
[
2
,
n
]
:
R
i
−
R
1
|
0
1
…
…
1
1
−
1
0
…
0
1
0
⋱
⋱
⋮
⋮
⋮
⋱
⋱
0
1
0
…
1
−
1
|
=
=
∀
i
∈
[
2
,
n
]
:
C
1
+
C
i
|
n
−
1
1
…
…
1
0
−
1
0
…
0
0
0
⋱
⋱
⋮
⋮
⋮
⋱
⋱
0
0
0
…
1
−
1
|
=
(
n
−
1
)
⋅
(
−
1
)
n
−
1
⟹
|
A
|
=
(
−
1
)
n
(
n
−
1
)
2
n
n
!