Linear-2 1

det:Fn×nFdet(A)=|A|=σSnsgn(σ)i=1naiσ(i)For example: |a11a12a21a22|=a11a22a12a21Let i[1,n]det(A)=|A|=j=1n(1)i+jaij|Mij(A)|Let j[1,n]det(A)=|A|=i=1n(1)i+jaij|Mij(A)|For example:|102310576|=1|1076|0|3056|+2|3157|=6+32=38

Exercises

Let A,BRn×n|A|=7,|B|=4C=AT(B1)5Find |C|Solution:|C|=|AT(B1)5|=|AT||(B1)5|=|A||B1|5=|A||B|5=7145=745
Let nN be oddLet ARn×n be anti-symmetricProve: A is non-invertibleProof:A=AT|A|=|AT|=(1)n|AT|=|A||A|=0A is non-invertible
|abcdefghi|=2Find |i4cf2i+fg4ad2g+dh4be2h+e|=|i4cf2ig4ad2gh4be2h|=2|i4cfig4adgh4beh|==2|4cfi4adg4beh|=8|cfiadgbeh|=8|cabfdeigh|=8|acbdfegih|=8|abcdefghi|=16
Let A={2i=j1i=j+11i=j10otherwiseFind |A|Let An=ARn×n|An|=2|An1|(1)|M12(An)|==2|An1|+(1)|An2|=2|An1||An2||A1|=2|A2|=3|A3|=42|An1||An2|=2(2An2An3)An2=3An22An3=4An33An4===(n1)A2(n2)A1=3n32n+4=n+1
Let A={2iij0i=jLet A={1ij0i=j|A|=(2n)!!|A|=2nn!|A||A|=|01110111111110|=i[2,n]:RiR1|01111001001011|==i[2,n]:C1+Ci|n11101000000011|=(n1)(1)n1|A|=(1)n(n1)2nn!