Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-2 3
Motivation behind diagonalization
A
∼
D
A
=
P
−
1
D
P
A
n
⏟
Hard
=
(
P
−
1
D
P
)
n
=
P
−
1
D
n
⏟
Easy
P
Diagonalizable matrix
A
is called diagonalizable iff
∃
D
:
A
∼
D
Diagonalizable matrix and eigenvectors
Let
A
∈
F
n
×
n
A
is diagonalizable
⟺
∃
B
basis of
F
n
:
∀
i
∈
[
1
,
n
]
:
A
v
i
=
λ
i
v
i
A
=
(
1
1
1
0
2
1
0
2
3
)
∈
R
3
×
3
Determine whether
A
is diagonalizable
Solution:
det
(
λ
I
−
A
)
=
|
λ
−
1
−
1
−
1
0
λ
−
2
−
1
0
−
2
λ
−
3
|
=
(
λ
−
1
)
(
(
λ
−
2
)
(
λ
−
3
)
−
2
)
=
(
λ
−
1
)
2
(
λ
−
4
)
λ
=
1
⟹
(
0
−
1
−
1
0
0
−
1
−
1
0
0
−
2
−
2
0
)
→
(
0
1
1
0
0
0
0
0
0
0
0
0
)
⟹
E
1
=
s
p
{
(
1
0
0
)
,
(
0
1
−
1
)
}
λ
=
4
⟹
(
3
−
1
−
1
0
0
−
2
−
1
0
0
−
2
−
1
0
)
→
(
3
−
1
−
1
0
0
2
1
0
0
0
0
0
)
⟹
E
4
=
s
p
{
(
1
1
2
)
}
P
=
(
1
1
0
0
1
1
0
2
−
1
)
⟹
D
=
(
1
0
0
0
4
0
0
0
1
)
T
:
R
2
→
R
2
B
=
{
(
1
0
)
,
(
1
1
)
}
T
(
v
1
)
=
2
v
1
T
(
v
2
)
=
v
1
+
v
2
Determine whether
T
is diagonalizable
Solution:
[
T
]
B
B
=
(
2
1
0
1
)
P
T
(
λ
)
=
(
λ
−
2
)
(
λ
−
1
)
⟹
T
is diagonalizable
E
2
=
s
p
{
(
1
0
)
}
E
1
=
s
p
{
(
1
−
1
)
}
C
B
=
{
(
1
0
)
,
(
1
−
1
)
}
=
{
[
d
1
]
B
,
[
d
2
]
B
}
⟹
D
=
{
(
1
0
)
,
(
0
−
1
)
}
[
T
]
C
B
C
B
=
(
2
1
0
1
)
−
Not diagonal!
[
T
]
D
D
=
(
2
0
0
1
)
−
Diagonal!
T
:
R
2
[
x
]
→
R
2
[
x
]
B
=
{
1
+
x
,
x
,
x
2
}
T
(
1
+
x
)
=
−
1
+
x
2
T
(
x
)
=
1
+
x
2
T
(
x
2
)
=
1
+
2
x
−
x
2
Determine whether
T
is diagonalizable
Solution:
[
T
]
B
B
=
(
−
1
1
1
1
−
1
1
1
1
−
1
)
P
T
(
λ
)
=
|
λ
+
1
−
1
−
1
−
1
λ
+
1
−
1
−
1
−
1
λ
+
1
|
=
(
λ
−
1
)
|
1
1
1
−
1
λ
+
1
−
1
−
1
−
1
λ
+
1
|
=
=
(
λ
−
1
)
|
1
1
1
0
λ
+
2
0
0
0
λ
+
2
|
=
(
λ
−
1
)
(
λ
+
2
)
2
λ
=
1
⟹
(
0
0
0
0
−
1
2
−
1
0
−
1
−
1
2
0
)
⟹
E
1
=
s
p
{
(
1
1
1
)
}
λ
=
−
2
⟹
(
0
0
0
0
−
1
−
1
−
1
0
−
1
−
1
−
1
0
)
⟹
E
−
2
=
s
p
{
(
1
0
−
1
)
,
(
1
−
1
0
)
}
⟹
D
=
{
1
+
2
x
+
x
2
,
1
+
x
−
x
2
,
1
}
⟹
[
T
]
D
D
=
(
1
0
0
0
−
2
0
0
0
−
2
)
A
=
(
1
0
0
0
π
2
0
0
−
1
e
3
0
−
1
2
3
5
3
4
)
B
=
(
4
4
4
4
0
1
π
−
e
0
0
2
3
0
0
0
3
)
Determine whether
A
∼
B
Solution:
P
A
(
λ
)
=
(
λ
−
1
)
(
λ
−
2
)
(
λ
−
3
)
(
λ
−
4
)
P
B
(
λ
)
=
(
λ
−
1
)
(
λ
−
2
)
(
λ
−
3
)
(
λ
−
4
)
A
∼
(
1
0
0
0
0
2
0
0
0
0
3
0
0
0
0
4
)
∼
B
⟹
A
∼
B
A
=
(
3
0
0
0
1
2
0
0
0
0
2
0
0
a
0
b
)
b
=
2
⟹
[
A
is diagonalizable
⟺
a
=
0
]
b
=
3
⟹
[
A
is diagonalizable
⟺
a
=
0
]
b
∉
{
2
,
3
}
⟹
A
is diagonalizable
A
∈
C
3
×
3
P
A
(
λ
)
=
λ
3
A
=
(
0
1
0
0
0
1
0
0
0
)
⟹
dim
(
N
(
0
I
−
A
)
)
=
dim
(
N
(
−
A
)
)
=
dim
(
N
(
A
)
)
=
1
⟹
A
is not diagonalizable