Linear-2 3

Motivation behind diagonalization

ADA=P1DPAnHard=(P1DP)n=P1DnEasyP

Diagonalizable matrix

A is called diagonalizable iff D:AD

Diagonalizable matrix and eigenvectors

Let AFn×nA is diagonalizableB basis of Fn:i[1,n]:Avi=λivi
A=(111021023)R3×3Determine whether A is diagonalizableSolution:det(λIA)=|λ1110λ2102λ3|=(λ1)((λ2)(λ3)2)=(λ1)2(λ4)λ=1(011001100220)(011000000000)E1=sp{(100),(011)}λ=4(311002100210)(311002100000)E4=sp{(112)}P=(110011021)D=(100040001)
T:R2R2B={(10),(11)}T(v1)=2v1T(v2)=v1+v2Determine whether T is diagonalizableSolution:[T]BB=(2101)PT(λ)=(λ2)(λ1)T is diagonalizableE2=sp{(10)}E1=sp{(11)}CB={(10),(11)}={[d1]B,[d2]B}D={(10),(01)}[T]CBCB=(2101)Not diagonal![T]DD=(2001)Diagonal!
T:R2[x]R2[x]B={1+x,x,x2}T(1+x)=1+x2T(x)=1+x2T(x2)=1+2xx2Determine whether T is diagonalizableSolution:[T]BB=(111111111)PT(λ)=|λ+1111λ+1111λ+1|=(λ1)|1111λ+1111λ+1|==(λ1)|1110λ+2000λ+2|=(λ1)(λ+2)2λ=1(000012101120)E1=sp{(111)}λ=2(000011101110)E2=sp{(101),(110)}D={1+2x+x2,1+xx2,1}[T]DD=(100020002)
A=(1000π2001e30123534)B=(444401πe00230003)Determine whether ABSolution:PA(λ)=(λ1)(λ2)(λ3)(λ4)PB(λ)=(λ1)(λ2)(λ3)(λ4)A(1000020000300004)BAB
A=(3000120000200a0b)b=2[A is diagonalizablea=0]b=3[A is diagonalizablea=0]b{2,3}A is diagonalizable
AC3×3PA(λ)=λ3A=(010001000)dim(N(0IA))=dim(N(A))=dim(N(A))=1A is not diagonalizable