Linear-2 4

Let V be a finitely generated vector space over FLet T,S:VV be linear transformationsProve: Eigenvalues of ST are equal to eigenvalues of TSProof:Let λ0 be an eigenvalue of TSv0:TSv=λvST(Sv)=S(TSv)=S(λv)=λSvλ is an eigenvalue of STLet λ be an eigenvalue of STLet λ=0 be an eigenvalue of TSTSv=0v=0TS is not invertible[T is not invertibleS is not invertibleST is not invertibleker(ST){0}λ is an eigenvalue of ST
Let ARn×n of rank 1Prove: xyR{0}:[xIA is invertibleyIA is invertibleDetermine whether there is always x0R:xIA is not invertibleProof:Let xIA be non-invertible and yIA be non-invertible{Ex=N(xIA){0}Ey=N(yIA){0}rank(A)=1γA(0)=n1μA(0)n1{μA(x)+μA(y)=1μA(x)1μA(y)1Contradiction!Solution:NoA=(0100)PA(λ)=λ2λ0R:det(λIA)0
Let V be a finitely generated vector space over FLet T:VV be an idempotentic linear transformationFind eigenvalues of TDetermine whether T is diagonalizableSolution:E0=ker(T)E1=Im(T)?Let Tv=vvIm(T)Let vIm(T)uV:Tu=vT(Tu)=Tv=vvE1E1=Im(T)dim(E0)+dim(E1)=nThere are no other eigenvalues and T is diagonalizable{1 is the only eigenvalueT is invertible(T=I)0 is the only eigenvalueT=00,1 are the only eigenvaluesotherwise
an={1n=1,2an1+2an2n>21,1,3,5,11,21,Let A=(1210)n>2:A(an1an2)=(anan1)An2(a2a1)=(anan1)PA(λ)=λ2λ2=(λ2)(λ+1)E2=sp{(21)}E1=sp{(11)}Let P=(2111),D=(2001)A=PDP1An=PDnP1(anan1)=P(2n200(1)n2)P1(a2a1)P1=13(1112)An2=13(2111)(2n200(1)n2)(1112)==13(2111)(2n22n2(1)n22(1)n2)=13(2n1+(1)n22n12(1)n2)an=13(2n(1)n2)an=432n213(1)n2an=αλ1n2+βλ2n2an=i=1kαiλink
Let ARn×nPA(λ)=λ3(λ2+4)Not diagonalizable over ROver C?PA(λ)=λ3(λ2i)(λ+2i)A is diagonalizablerank(A)=2A=(0010000000000000002i000002i) Incorrect :(, A must only have real valuesA=(0010000000000000000200020) Correct! :)A=(0100000100000000000200020) Correct! :) And a Jordan 3x3 block!!