Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-2 4
Let
V
be a finitely generated vector space over
F
Let
T
,
S
:
V
→
V
be linear transformations
Prove:
Eigenvalues of
S
T
are equal to eigenvalues of
T
S
Proof:
Let
λ
≠
0
be an eigenvalue of
T
S
∃
v
≠
0
:
T
S
v
=
λ
v
⟹
S
T
(
S
v
)
=
S
(
T
S
v
)
=
S
(
λ
v
)
=
λ
S
v
⟹
λ
is an eigenvalue of
S
T
Let
λ
be an eigenvalue of
S
T
Let
λ
=
0
be an eigenvalue of
T
S
⟹
T
S
v
=
0
v
=
0
⟹
T
S
is not invertible
⟹
[
T
is not invertible
S
is not invertible
⟹
S
T
is not invertible
⟹
k
e
r
(
S
T
)
≠
{
0
}
⟹
λ
is an eigenvalue of
S
T
Let
A
∈
R
n
×
n
of rank
1
Prove:
∀
x
≠
y
∈
R
∖
{
0
}
:
[
x
I
−
A
is invertible
y
I
−
A
is invertible
Determine whether there is always
x
≠
0
∈
R
:
x
I
−
A
is not invertible
Proof:
Let
x
I
−
A
be non-invertible and
y
I
−
A
be non-invertible
⟹
{
E
x
=
N
(
x
I
−
A
)
≠
{
0
}
E
y
=
N
(
y
I
−
A
)
≠
{
0
}
r
a
n
k
(
A
)
=
1
⟹
γ
A
(
0
)
=
n
−
1
⟹
μ
A
(
0
)
≥
n
−
1
⟹
{
μ
A
(
x
)
+
μ
A
(
y
)
=
1
μ
A
(
x
)
≥
1
μ
A
(
y
)
≥
1
−
Contradiction!
Solution:
No
A
=
(
0
1
0
0
)
⟹
P
A
(
λ
)
=
λ
2
⟹
∀
λ
≠
0
∈
R
:
det
(
λ
I
−
A
)
≠
0
Let
V
be a finitely generated vector space over
F
Let
T
:
V
→
V
be an idempotentic linear transformation
Find eigenvalues of
T
Determine whether
T
is diagonalizable
Solution:
E
0
=
k
e
r
(
T
)
E
1
=
I
m
(
T
)
?
Let
T
v
=
v
⟹
v
∈
I
m
(
T
)
Let
v
∈
I
m
(
T
)
∃
u
∈
V
:
T
u
=
v
⟹
T
(
T
u
)
=
T
v
=
v
⟹
v
∈
E
1
⟹
E
1
=
I
m
(
T
)
dim
(
E
0
)
+
dim
(
E
1
)
=
n
⟹
There are no other eigenvalues and
T
is diagonalizable
{
1
is the only eigenvalue
T
is invertible
(
T
=
I
)
0
is the only eigenvalue
T
=
0
0
,
1
are the only eigenvalues
otherwise
a
n
=
{
1
n
=
1
,
2
a
n
−
1
+
2
a
n
−
2
n
>
2
1
,
1
,
3
,
5
,
11
,
21
,
…
Let
A
=
(
1
2
1
0
)
∀
n
>
2
:
A
⋅
(
a
n
−
1
a
n
−
2
)
=
(
a
n
a
n
−
1
)
⟹
A
n
−
2
⋅
(
a
2
a
1
)
=
(
a
n
a
n
−
1
)
P
A
(
λ
)
=
λ
2
−
λ
−
2
=
(
λ
−
2
)
(
λ
+
1
)
E
2
=
s
p
{
(
2
1
)
}
E
−
1
=
s
p
{
(
1
−
1
)
}
Let
P
=
(
2
1
1
−
1
)
,
D
=
(
2
0
0
−
1
)
A
=
P
D
P
−
1
⟹
A
n
=
P
D
n
P
−
1
⟹
(
a
n
a
n
−
1
)
=
P
(
2
n
−
2
0
0
(
−
1
)
n
−
2
)
P
−
1
(
a
2
a
1
)
P
−
1
=
1
3
(
1
1
1
−
2
)
A
n
−
2
=
1
3
(
2
1
1
−
1
)
(
2
n
−
2
0
0
(
−
1
)
n
−
2
)
(
1
1
1
−
2
)
=
=
1
3
(
2
1
1
−
1
)
(
2
n
−
2
2
n
−
2
(
−
1
)
n
−
2
−
2
⋅
(
−
1
)
n
−
2
)
=
1
3
(
2
n
−
1
+
(
−
1
)
n
−
2
2
n
−
1
−
2
⋅
(
−
1
)
n
−
2
∗
∗
)
⟹
a
n
=
1
3
(
2
n
−
(
−
1
)
n
−
2
)
⟹
a
n
=
4
3
2
n
−
2
−
1
3
(
−
1
)
n
−
2
a
n
=
α
λ
1
n
−
2
+
β
λ
2
n
−
2
a
n
=
∑
i
=
1
k
α
i
λ
i
n
−
k
Let
A
∈
R
n
×
n
P
A
(
λ
)
=
λ
3
(
λ
2
+
4
)
Not diagonalizable over
R
Over
C
?
P
A
(
λ
)
=
λ
3
(
λ
−
2
i
)
(
λ
+
2
i
)
A
is diagonalizable
⟺
r
a
n
k
(
A
)
=
2
A
=
(
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
i
0
0
0
0
0
−
2
i
)
Incorrect :(,
A
must only have real values
A
=
(
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
−
2
0
)
Correct! :)
A
=
(
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
−
2
0
)
Correct! :) And a Jordan 3x3 block!!