Linear-2 5

Triangularizable matrix

A is called triangularizable iff T:T is a triangular matrix:ATATPA(λ) is factorizable into linear factors
A=(123402060)Over C all matrices are triangularizableOver R?PA(λ)=|λ1234λ206λ|=6|λ1342|+λ|λ124λ|==1212λ72+λ2(λ1)8λ==λ3λ220λ60=(λ6)(λ2+5λ+10)AT
Let ARn×n be nilpotentDetermine whether A is triangularizableDetermine whether A is diagonalizableSolution:ADA=0PA(λ)=λnAT

Triangularization

1.Find PA(λ) and eigenvalues2.Find eigenspace for each eigenvalue3.Add vectors to the union of eigenspaces to get a basis of Fn4.Assign each vector from the basis to be a column of PResulting matrix is: P1AP=(D0B)Where D is a diagonal matrix with eigenvalues on the diagonalEach eigenvalue is featured γA(λi) timesAnd B is a matrix with eigenvalues of AFor each eigenvalue: γB(λi)=μA(λi)γA(λi)
A=(13451113259121233)PA(λ)=|λ+13451λ11325λ912123λ+3|=R1+Ri|λ1λ1λ1λ11λ11325λ912123λ+3|==(λ1)|11111λ11325λ912123λ+3|=(λ1)|10001λ2423λ710112λ+2|==(λ1)|λ243λ71012λ+2|=(λ1)|λ240λ13λ412λ+2|==(λ1)(λ(λ1)(λ+2)2λ(3λ4)+(6λ84λ+4))==(λ1)(λ(λ+2)(λ1)6λ(λ1)+4(λ1))==(λ1)2(λ(λ+2)6λ+4)=(λ1)2(λ2)2λ=1(23451013258121234)(11110124036100123)(1111012400010000)E1=sp{(1210)}E2=sp{(1021)}P=(1100200012100101)P1=(01200112002321011201)P1AP=(1002001212003272)PB(λ)=(λ1)(λ2)P^1BP^=(1002)(I00P^)1=(I00P^1)(I00P^)1P1AP(I00P^)=(D0D)