Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-2 5
Triangularizable matrix
A
is called triangularizable iff
∃
T
:
T
is a triangular matrix
:
A
∼
T
A
∼
T
⟺
P
A
(
λ
)
is factorizable into linear factors
A
=
(
1
2
3
4
0
2
0
6
0
)
Over
C
−
all matrices are triangularizable
Over
R
?
P
A
(
λ
)
=
|
λ
−
1
−
2
−
3
−
4
λ
−
2
0
−
6
λ
|
=
6
⋅
|
λ
−
1
−
3
−
4
−
2
|
+
λ
|
λ
−
1
−
2
−
4
λ
|
=
=
12
−
12
λ
−
72
+
λ
2
(
λ
−
1
)
−
8
λ
=
=
λ
3
−
λ
2
−
20
λ
−
60
=
−
(
λ
−
6
)
(
λ
2
+
5
λ
+
10
)
⟹
A
≁
T
Let
A
∈
R
n
×
n
be nilpotent
Determine whether
A
is triangularizable
Determine whether
A
is diagonalizable
Solution:
A
∼
D
⟺
A
=
0
P
A
(
λ
)
=
λ
n
⟹
A
∼
T
Triangularization
1.
Find
P
A
(
λ
)
and eigenvalues
2.
Find eigenspace for each eigenvalue
3.
Add vectors to the union of eigenspaces to get a basis of
F
n
4.
Assign each vector from the basis to be a column of
P
Resulting matrix is:
P
−
1
A
P
=
(
D
∗
0
B
)
Where
D
is a diagonal matrix with eigenvalues on the diagonal
Each eigenvalue is featured
γ
A
(
λ
i
)
times
And
B
is a matrix with eigenvalues of
A
For each eigenvalue:
γ
B
(
λ
i
)
=
μ
A
(
λ
i
)
−
γ
A
(
λ
i
)
A
=
(
−
1
−
3
−
4
−
5
1
1
−
1
−
3
2
5
9
12
−
1
−
2
−
3
−
3
)
P
A
(
λ
)
=
|
λ
+
1
3
4
5
−
1
λ
−
1
1
3
−
2
−
5
λ
−
9
−
12
1
2
3
λ
+
3
|
=
R
1
+
R
i
|
λ
−
1
λ
−
1
λ
−
1
λ
−
1
−
1
λ
−
1
1
3
−
2
−
5
λ
−
9
−
12
1
2
3
λ
+
3
|
=
=
(
λ
−
1
)
|
1
1
1
1
−
1
λ
−
1
1
3
−
2
−
5
λ
−
9
−
12
1
2
3
λ
+
3
|
=
(
λ
−
1
)
|
1
0
0
0
−
1
λ
2
4
−
2
−
3
λ
−
7
−
10
1
1
2
λ
+
2
|
=
=
(
λ
−
1
)
|
λ
2
4
−
3
λ
−
7
−
10
1
2
λ
+
2
|
=
(
λ
−
1
)
|
λ
2
4
0
λ
−
1
3
λ
−
4
1
2
λ
+
2
|
=
=
(
λ
−
1
)
(
λ
(
λ
−
1
)
(
λ
+
2
)
−
2
λ
(
3
λ
−
4
)
+
(
6
λ
−
8
−
4
λ
+
4
)
)
=
=
(
λ
−
1
)
(
λ
(
λ
+
2
)
(
λ
−
1
)
−
6
λ
(
λ
−
1
)
+
4
(
λ
−
1
)
)
=
=
(
λ
−
1
)
2
(
λ
(
λ
+
2
)
−
6
λ
+
4
)
=
(
λ
−
1
)
2
(
λ
−
2
)
2
λ
=
1
⟹
(
2
3
4
5
−
1
0
1
3
−
2
−
5
−
8
−
12
1
2
3
4
)
→
(
1
1
1
1
0
1
2
4
0
−
3
−
6
−
10
0
1
2
3
)
→
(
1
1
1
1
0
1
2
4
0
0
0
1
0
0
0
0
)
⟹
E
1
=
s
p
{
(
1
−
2
1
0
)
}
…
⟹
E
2
=
s
p
{
(
1
0
−
2
1
)
}
⟹
P
=
(
1
1
0
0
−
2
0
0
0
1
−
2
1
0
0
1
0
1
)
P
−
1
=
(
0
−
1
2
0
0
1
1
2
0
0
2
3
2
1
0
−
1
−
1
2
0
1
)
P
−
1
A
P
=
(
1
0
∗
∗
0
2
∗
∗
0
0
−
1
2
−
1
2
0
0
3
2
7
2
)
P
B
(
λ
)
=
(
λ
−
1
)
(
λ
−
2
)
⟹
P
^
−
1
B
P
^
=
(
1
0
0
2
)
(
I
0
0
P
^
)
−
1
=
(
I
0
0
P
^
−
1
)
⟹
(
I
0
0
P
^
)
−
1
P
−
1
A
P
(
I
0
0
P
^
)
=
(
D
∗
0
D
)