Linear-2 6

Cayley-Hamilton theorem

AFn×nPA(A)=0
Let AFn×nProve: dim(sp{I,A,A2,})nProof:PA(A)=An+i=0n1αiAi=0An=i=0n1αiAisp{I,A,A2,,An1}By Induction starting from n:Let knAk+1=AAk=A(i=0n1βiAi)==i=0n1βiAi+1sp{I,A,,Ak}=sp{I,A,,An1}Note: by using mA instead of PA we can bound the dimension even further by deg(mA)Note: dimension is exactly deg(mA) as otherwise mA would not be minimal
A2=AA2A=0f(x)=x2x,f(A)=0f(x)=x(x1)mA{x,x1,x(x1)}Largest Jordan block in AJ is of size 1AJ is diagonalA is diagonalizable
AR7×7 is invertible(A3+A)(A2I)=0tr(A)=2Find PA,mASolution:(A3+A)(A2I)=A(A2+I)(A2I)=0A is invertible(A2+I)(A2I)=0mA(x)(x2+1)(x2)Let mA(x)=x2+1PA(x)=(x2+1)k2k=7Contradiction!Let mA(x)=x2PA(x)=(x2)7tr(A)=14Contradiction!mA(x)=(x2+1)(x2)PA(x)=(x2+1)k(x2)72kPA(x)=[(x2+1)(x2)5(x2+1)2(x2)3(x2+1)3(x2)Let us examine this over CmA(x)=(xi)(x+i)(x2)A is diagonalizable over CPA(x)=(xi)k(x+i)k(x2)72ktr(A)=kiki+2(72k)=2(72k)72k=1k=3PA(x)=(x2+1)3(x2)
Find Jordan form of A=(2000110011011112) over CSolution:PA(x)=|x+20001x10011x1111x2|=(x+2)(x1)|x11x2|==(x+2)(x1)(x22x+1)=(x+2)(x1)3λ=1(3000100011111111)(0000100001110000)γA(1)=2AJ=J1(2)J2(1)J1(1)
Let A=(nn1n210nn12n100n)Rn×nPA(x)=(xn)nrank(nIA)=n1γA(n)=1AJ=Jn(n)
Let A,BFn×nLet PA=PBLet mA=mBLet λ:γA(λ)=γB(λ)Prove or disprove: ABDisproof:AJ=J3(λ)J2(λ)J2(λ)BJ=J3(λ)J3(λ)J1(λ)
Let AC6×6Let PA(x)=(x1)4(x2)2Let mA(x)=(x1)2(x2)Let γA(1)=2Find AJSolution:AJ=J2(1)J2(1)J1(2)J1(2)
Let A=(310410482)C3×3Find mASolution:PA(x)=|x3104x+1048x+2|=(x+2)(x22x+1)=(x+2)(x1)2(A+2I)(AI)=(510410480)(210400483)=(6)0mA(x)=(x+2)(x1)2Alternative approach:(210420483)(210000483)γA(1)=1AJ=J1(2)J2(1)mA(x)=(x+2)(x1)2