Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-2 6
Cayley-Hamilton theorem
A
∈
F
n
×
n
⟹
P
A
(
A
)
=
0
Let
A
∈
F
n
×
n
Prove:
dim
(
s
p
{
I
,
A
,
A
2
,
…
}
)
≤
n
Proof:
P
A
(
A
)
=
A
n
+
∑
i
=
0
n
−
1
α
i
A
i
=
0
⟹
A
n
=
∑
i
=
0
n
−
1
−
α
i
A
i
∈
s
p
{
I
,
A
,
A
2
,
…
,
A
n
−
1
}
By Induction starting from
n
:
Let
k
≥
n
A
k
+
1
=
A
A
k
=
A
(
∑
i
=
0
n
−
1
β
i
A
i
)
=
=
∑
i
=
0
n
−
1
β
i
A
i
+
1
∈
s
p
{
I
,
A
,
…
,
A
k
}
=
s
p
{
I
,
A
,
…
,
A
n
−
1
}
Note: by using
m
A
instead of
P
A
we can bound the dimension even further by
deg
(
m
A
)
Note: dimension is exactly
deg
(
m
A
)
as otherwise
m
A
would not be minimal
A
2
=
A
⟹
A
2
−
A
=
0
⟹
f
(
x
)
=
x
2
−
x
,
f
(
A
)
=
0
f
(
x
)
=
x
(
x
−
1
)
⟹
m
A
∈
{
x
,
x
−
1
,
x
(
x
−
1
)
}
⟹
Largest Jordan block in
A
J
is of size
1
⟹
A
J
is diagonal
⟹
A
is diagonalizable
A
∈
R
7
×
7
is invertible
(
A
3
+
A
)
(
A
−
2
I
)
=
0
t
r
(
A
)
=
2
Find
P
A
,
m
A
Solution:
(
A
3
+
A
)
(
A
−
2
I
)
=
A
(
A
2
+
I
)
(
A
−
2
I
)
=
0
A
is invertible
⟹
(
A
2
+
I
)
(
A
−
2
I
)
=
0
m
A
(
x
)
∣
(
x
2
+
1
)
(
x
−
2
)
Let
m
A
(
x
)
=
x
2
+
1
⟹
P
A
(
x
)
=
(
x
2
+
1
)
k
⟹
2
k
=
7
−
Contradiction!
Let
m
A
(
x
)
=
x
−
2
⟹
P
A
(
x
)
=
(
x
−
2
)
7
⟹
t
r
(
A
)
=
14
−
Contradiction!
⟹
m
A
(
x
)
=
(
x
2
+
1
)
(
x
−
2
)
⟹
P
A
(
x
)
=
(
x
2
+
1
)
k
(
x
−
2
)
7
−
2
k
P
A
(
x
)
=
[
(
x
2
+
1
)
(
x
−
2
)
5
(
x
2
+
1
)
2
(
x
−
2
)
3
(
x
2
+
1
)
3
(
x
−
2
)
Let us examine this over
C
m
A
(
x
)
=
(
x
−
i
)
(
x
+
i
)
(
x
−
2
)
⟹
A
is diagonalizable over
C
P
A
(
x
)
=
(
x
−
i
)
k
(
x
+
i
)
k
(
x
−
2
)
7
−
2
k
⟹
t
r
(
A
)
=
k
i
−
k
i
+
2
(
7
−
2
k
)
=
2
(
7
−
2
k
)
⟹
7
−
2
k
=
1
⟹
k
=
3
⟹
P
A
(
x
)
=
(
x
2
+
1
)
3
(
x
−
2
)
Find Jordan form of
A
=
(
−
2
0
0
0
−
1
1
0
0
1
−
1
0
−
1
1
1
1
2
)
over
C
Solution:
P
A
(
x
)
=
|
x
+
2
0
0
0
1
x
−
1
0
0
−
1
1
x
1
−
1
−
1
−
1
x
−
2
|
=
(
x
+
2
)
(
x
−
1
)
|
x
1
−
1
x
−
2
|
=
=
(
x
+
2
)
(
x
−
1
)
(
x
2
−
2
x
+
1
)
=
(
x
+
2
)
(
x
−
1
)
3
λ
=
1
⟹
(
3
0
0
0
1
0
0
0
−
1
1
1
1
−
1
−
1
−
1
−
1
)
→
(
0
0
0
0
1
0
0
0
0
1
1
1
0
0
0
0
)
⟹
γ
A
(
1
)
=
2
⟹
A
J
=
J
1
(
−
2
)
⊕
J
2
(
1
)
⊕
J
1
(
1
)
Let
A
=
(
n
n
−
1
n
−
2
…
1
0
n
n
−
1
⋱
2
⋮
⋱
⋱
⋱
⋮
⋮
⋱
⋱
n
−
1
0
…
…
0
n
)
∈
R
n
×
n
P
A
(
x
)
=
(
x
−
n
)
n
r
a
n
k
(
n
I
−
A
)
=
n
−
1
⟹
γ
A
(
n
)
=
1
⟹
A
J
=
J
n
(
n
)
Let
A
,
B
∈
F
n
×
n
Let
P
A
=
P
B
Let
m
A
=
m
B
Let
∀
λ
:
γ
A
(
λ
)
=
γ
B
(
λ
)
Prove or disprove:
A
∼
B
Disproof:
A
J
=
J
3
(
λ
)
⊕
J
2
(
λ
)
⊕
J
2
(
λ
)
B
J
=
J
3
(
λ
)
⊕
J
3
(
λ
)
⊕
J
1
(
λ
)
Let
A
∈
C
6
×
6
Let
P
A
(
x
)
=
(
x
−
1
)
4
(
x
−
2
)
2
Let
m
A
(
x
)
=
(
x
−
1
)
2
(
x
−
2
)
Let
γ
A
(
1
)
=
2
Find
A
J
Solution:
A
J
=
J
2
(
1
)
⊕
J
2
(
1
)
⊕
J
1
(
2
)
⊕
J
1
(
2
)
Let
A
=
(
3
1
0
−
4
−
1
0
4
−
8
−
2
)
∈
C
3
×
3
Find
m
A
Solution:
P
A
(
x
)
=
|
x
−
3
−
1
0
4
x
+
1
0
−
4
8
x
+
2
|
=
(
x
+
2
)
(
x
2
−
2
x
+
1
)
=
(
x
+
2
)
(
x
−
1
)
2
(
A
+
2
I
)
(
A
−
I
)
=
(
5
1
0
−
4
1
0
4
−
8
0
)
(
2
1
0
−
4
0
0
4
−
8
−
3
)
=
(
6
∗
∗
∗
∗
∗
∗
∗
∗
)
≠
0
⟹
m
A
(
x
)
=
(
x
+
2
)
(
x
−
1
)
2
Alternative approach:
(
−
2
−
1
0
4
2
0
−
4
8
3
)
→
(
−
2
−
1
0
0
0
0
−
4
8
3
)
⟹
γ
A
(
1
)
=
1
⟹
A
J
=
J
1
(
−
2
)
⊕
J
2
(
1
)
⟹
m
A
(
x
)
=
(
x
+
2
)
(
x
−
1
)
2